
Granular Games in Real-Time Environment
Maciej Świechowski

Silver Bullet Labs
Warsaw, Poland

m.swiechowski@mini.pw.edu.pl

Dominik Ślęzak
Institute of Informatics, University of Warsaw

Warsaw, Poland
slezak@mimuw.edu.pl

Abstract—We propose a new approach to assist computer game
creators in introducing AI agent-players into their games. We
point out that traditional methods, such as Monte Carlo Tree
Search (MCTS), may not provide creators with good interfaces
to embed the required AI elements because of too fine-grained
space of (often loosely defined) game states. Thus, we suggest
to follow the paradigms of information granulation and re-
define states/actions at a higher level of abstraction, so the
MCTS algorithms can operate on more general concepts, which
reflect the creators’ domain knowledge. In our approach, the
game developers are responsible for specification of mechanisms
behind particular high-level states/actions from the perspective
of “real world of the game”. Meanwhile, the MCTS routines
take advantage of the fact that many unique sequences of fine-
grained actions become to fall into the same clusters reflecting
information granules corresponding to the introduced concepts.

Index Terms—Real-Time Video Games, Monte Carlo Tree
Search, Information Granulation, Simplified Games

I. INTRODUCTION

There has been a lot of successful research done in the area
of utilizing the elements of AI in making computer games
more competitive and interesting for human players [1]. Still,
it remains quite challenging to develop tools and libraries that
would make the process of introducing AI-based components
easier for professional game creators [2]. The current most
popular methodologies assume that game creators implement
behaviors of “intelligent” game-playing agents in quite a hand-
crafted way, without the ability to introduce multiple layers
of abstraction and let these AI agents dynamically search for
optimal actions at the level more comparable to the way of
human reasoning. On the other hand, we believe that this kind
of abstraction – a kind of game simplification/granulation –
would allow game creators for introducing AI agents that are
both, more tractable from a creator’s perspective and more
“human-like” from the viewpoint of an average player.

In this paper, we attempt to make a step toward establishing
a more intuitive AI-related library for developers of real-time
games. We proceed with the idea of information granulation
[3], that is, clustering together both, states and (sequences
of) actions, so it becomes possible to operate with higher-
level concepts describing what can actually happen during
a given game play. We actually believe that this kind of
approach can be useful for multiple purposes, including not
only game developers but also end users – i.e. casual human

This work was co-financed by EU Smart Growth Operational Programme
2014-2020 under GameINN project POIR.01.02.00-00-0150/16.

players – who may wish to seek for summaries of their game
experiences in a simplified, higher-level language [4].

As our proposal refers to adapting the aspects of information
granulation into real-time games, we call it, for short, the
granular games approach. It is based on the mechanisms of
Monte Carlo Tree Search (MCTS) [5], [6], though it re-defines
– and actually highly simplifies the space of states/actions
that the MCTS algorithm needs to work with in order to
make it computationally tractable. Representation of a game
in a simplified (abstract) fashion needs to preserve its nature
and dynamics, i.e., some strategic/tactical decisions that can
be found at the simplified – higher – level should be easily
transferable to the level of the actual game. Thus, if computer
games are said to be models of real or fictional worlds, then
we go one step deeper and propose a model of a game. Such
a model can be used to derive useful knowledge about the
game, although our main goal in this paper is to utilize it to
find quasi-optimal simplified (abstract) actions for an agent in
the game that is controlled by the computer.

There is a whole variety of ways how granular approaches
can be applied to the MCTS algorithms [7], [8]. Herein, from
the perspective of iteratively performed MCTS steps – namely,
selection, expansion, simulation and back-propagation – one
of the most pronounced distinctions is whether the simulation
phase is fine-grained or coarse-grained.

1) Fine-grained simulation: The whole game logics such
as determining legal actions, applying actions, updating
states, etc., are performed at the finest-grained level. As
an effect, a game simulation and a normal game use the
same mechanism.

2) Coarse-grained simulation: One can simulate games
using abstract concepts only. This variant is usually much
more difficult to implement because the simulator must
operate on a representation that the game has not been
designed originally for. For example, a course grained
action can be “attack the opposing army”. The resulting
state is usually one of many possible states, hence, coarse-
grained simulations are usually based on probability and
sampling from a space of possible realizations.

Our approach employs three granulation levels. First, there
is an actual game. Our model does not perform simulation
on this finest-grained level, as it would be computationally
infeasible. Next, there is a simplified game simulation level,
where the simulations are actually performed. Finally, there is



a tree level, which contains abstract states and actions only
for the purpose of storing the statistics. This is the coarsest-
grained level. As for now, in spite of working with three above
levels, we assume that the human input will be taken into
account rather only at the first level of abstraction. However,
this assumption can change in the future.

The paper is organized as follows. In Section II, we recall
the MCTS algorithm. In Section III, we outline our motivation
for putting together the ideas of information granulation and
MCTS, particularly from the perspective of real-time video
games. In Section IV, we introduce the six-component model
that we propose as the means for supporting game developers.
In Section V, we show how to implement our model so it
operate efficiently within the MCTS framework, including
communication between the aforementioned three layers of
granularity. Section VI concludes our research. Although this
work should be regarded as a position paper, we enrich it with
the feedback obtained from the first iteration of prototypes that
we have already implemented.

II. MONTE CARLO TREE SEARCH

Monte Carlo Tree Search (MCTS) [5] is an increasingly
popular method for developing game-playing AI agents. It is
based on an iterative tree-search without the need for any
heuristic evaluation function. Instead, a random sampling is
performed through simulations to the end of the game. The
algorithm gradually builds a tree in the computer’s memory
with statistics of the performed simulations (see Figure 1). The
four phases of MCTS are as follows:

1) Selection: The algorithm starts from the root node and
searches the tree down by choosing subsequent children
nodes. The child node at each node down the path is
chosen according to the so-called selection policy. The
selection phase ends when there is no child node to
choose, i.e., a leaf node has been reached.

2) Expansion: One of possible actions is applied to a node
selected in the previous step and the tree is grown by
adding a child node representing the resulting state.

3) Simulation: The algorithm starts from the new node and
performs a complete game simulation, i.e., reaching a
terminal state. This phase is done outside the game-tree
and no nodes are added to it. Once the simulation reaches
the terminal state, the obtained goals (outcomes) of each
player are fetched.

4) Backpropagation: The statistics are recalculated inside
all nodes along the path from the root to the leaf (contain-
ing the starting state for the simulation) in the game tree.
They include the average scores of each player and the
number of visits to a node. An average score is computed
as the total score achieved in iterations going through a
particular node divided by the number of visits.

The selection formula is designed to keep a balance between
exploration and exploitation. Typically, the Upper Confidence
Bounds Applied to Trees (UCT) algorithm is used [6]:

Fig. 1. Depiction of four phases, which comprise the MCTS algorithm.

a∗ = argmaxa∈A(s)

{
Q(s, a) + C

√
ln[N(s)]
N(s,a)

}
(1)

where A(s) is a set of actions available in state s, Q(s, a) is the
average result of playing action a in state s in the simulations
performed so far, N(s) – a number of times state s has been
visited in previous simulations and N(s, a) – a number of
times action a has been sampled in s in previous simulations.
Constant C controls the aforementioned balance. It has to be
tuned, but provided that scores of games are confined to the
[0, 1] interval, in which 0 denotes the loss and 1 denotes the
win, the theoretical optimal value is

√
2.

The MCTS method was first successfully applied to Go
[9]. Nowadays, it is the method of choice in combinatorial
games such as Hex [10], Othello [11], Arimaa [12], Havannah
[13], Lines of Actions [14], etc. Its universal nature makes
it the state-of-the-art method for universal domains such as
General Game Playing (GGP) [15] and General Video Game
Playing (GVGP) [16]. MCTS is also applied outside the realm
of games, e.g., in scheduling and real-life simulations.

III. MOTIVATION FOR GRANULAR APPROACH

Despite the advantages over traditional approaches, MCTS
is still just a tree search algorithm and its effectiveness is
heavily dependent on both the size and structure of the tree. If
a considered problem (game) contains intractable number of
possible states, then the statistical evidence gathered through
iterations of the algorithm might be not confident enough due
to low number of samples. The algorithm has to repeatedly
sample states in order to empirically learn their quality, which
is not always feasible. This is quite analogous to challenges
known, e.g., from the process mining, whereby clustering
similar sequences of states into more general trends may help
from both, predictive and descriptive viewpoints [17].

Another detrimental factor for the MCTS performance is
huge “tactical complexity” of a game, which often is reflected
in existence of sequences of actions that lead to an expected
positive outcome while even slight deviation from the optimal
path leads to a negative outcome. This kind of complexity



suggests that game modeling – from both, designing and learn-
ing perspectives – might be better conducted in a hierarchical
fashion, whereby sequences of basic actions are represented
as higher-level actions that MCTS could work with. For both
above reasons – complexity and sparsity of sequences of states
and actions – we intend to follow in our approach the idea
of information granulation that, according to Lotfi A. Zadeh,
plays a key role in implementation of the strategy of divide-
and-conquer in human problem-solving [18].

Below we discuss several properties that make developing
MCTS-based game-playing AI agents in classical combinato-
rial games and real-time video games a different problem. One
can see that, herein, hierarchical and granular approaches may
be quite useful. Certainly, we do not mean that introducing
higher-level concepts and actions would not be beneficial
in combinatorial games. Nevertheless, we focus on real-time
environments as they are a direct practical inspiration for us
to consider the idea of granular games.

1) Huge combinatorial complexity: The main problem
already introduced in this section. Significant complexity
usually stems from continuous (as opposed to discrete)
nature of a game. Both time and space can be continuous.
For instance, in a real-time strategy game [19], a player
may control a large number of units on a 2D or 3D map,
so the possible combinations of each unit’s movement
make up for the number of possible actions and, therefore,
achievable states. This alone can lead to millions of
combination, not to mention units’ special actions (such
as attack), new units construction, handling economy, etc.
From many perspectives, such challenges are comparable
to real-world simulation problems, e.g., in the area of
what-if analysis in decision support systems [20].

2) Little computational budget: In commercial real-time
games, the AI module has little time available to perform
computations. This is mainly due to the fact that there
are many other aspects such as 3D graphics, physics,
game logic, network management (in online multi-player
games) and handling input that require processing power.

3) Computational scalability: The algorithm for AI has to
not only be fast, but also must scale well with properties
of the game environment such as the number of players
or the size of the world. These are parameters that are
usually prototyped and adjusted by game designers. The
AI should not suddenly stop working (or at least not too
quickly) due to increased game complexity.

4) Lack of formal structure: This makes representing and
comparing states and actions in a game a hard problem.
In commercial games, there is often no object in the ar-
chitecture that represents state of the game in a structured
form. The theoretical game-state can be considered as a
composition of internal states of some objects that are in
the game. This challenge seems to correspond to the idea
of information granulation and operations on complex
objects, especially given the fact that information about
game states is often incomplete [3].

5) Configurable and predictable AI: The method should
be easily reconfigurable if either game mechanics are
changed or game creators decide that the AI should act
differently. This aspect is specially important from the
perspective of our project related to supporting game cre-
ators while introducing game-playing agents. However,
predictability of AI is certainly a wider topic.

6) Self-explanatory AI: For verification needs, a human
should be able to analyze why the AI agents act a certain
way. Therefore, a representation with intractable number
of nodes is not convenient. It is much easier to analyze
compact representations. This aspect corresponds also
to another game-related project that we are developing,
namely, a support system that advises players how to
improve their skills [4]. The ability to explain advices
at a level that is understandable for human players is
actually quite analogous to the ability to explain AI agent
behaviors to game creators – we believe that both these
tasks require a kind of conceptual language that describes
a given game in a simplified, hierarchical way.

To address the above challenges and requirements, we are
going to rely on approximate reasoning methods using an
abstract model of a game. The results of such reasoning can
be position evaluation in some higher-level representation of
a game, which can be translated to a useful information in
the actual game. If there exist certain properties, based on
which states can be grouped into clusters invariant with respect
to the outcome for the players, then such groups could be
regarded as nodes in the game tree and the statistics could
be gathered for such state groups rather than concrete states.
Similar approaches have been proposed in the literature in
works such as [7], [8]. However, our proposal is to extend
the idea of clustering similar sequences of similar states
onto a more complete framework assuming that the obtained
clusters/granules correspond to some higher-level game-related
concepts and letting the AI agents transform those higher-level
concepts into “real” game actions.

This kind of approach seems to be analogous to other
applications requiring dealing with complex spatio-temporal
concepts and objects. In particular, the process of identifying
those lower- and higher-level components usually requires
involvement of domain knowledge about a given problem [21],
[22]. The domain knowledge (on a domain level), which is
often expressed in natural language, must be next linked with
the system level (here based on MCTS). In the next section,
we will show that our domain level is represented by boolean
sentences that describe certain facts about the game but written
in form of functions in a programming language.

IV. GRANULAR MCTS GAMES: THE MODEL

As already outlined, our idea is to help the MCTS algorithm
by representing a complex game in a simplified (abstract)
fashion. This kind of approach could be useful in many aspects
of game analytics [4], although in this particular paper we
concentrate mainly on supporting game creators in embedding
AI players into the designed environments. This way, we



Fig. 2. A sample simplified game, which features three soldiers: blue, red
and green from the left, respectively. Two of them are equipped with a gun
and they are ready to shoot. The semi-transparent triangles indicate visibility
range of the soldiers. We refer to Table I for exemplar relations defined in
this game and their current states of truth.

continue our research related to MCTS-based game-playing AI
agents [2], now extended toward real-time games. Particularly,
we focus on the problem of action selection.

The following components of our model are based on
prototypes that we have implemented up to now. The idea
of expressing humans’ needs as domain parameters, using a
model to work with those parameters and finally synthesizing
results follows the principles of Kansei engineering [23]. Also,
the idea of composing an action based on the MCTS-driven
guidelines formulated at a simplified level could be referred
to the paradigms of computing with words [24].

1) Relations represent logical sentences about the game,
i.e., statements that are true or false. A game developer
provides our engine with a “check function” for each
defined relation, which is a lambda expression that returns
a boolean value. It operates on any number of arguments,
which are either of type FreeGameObject (see below)
or are constant throughout the game. Figure 2 depicts
a simple game and Table I contains exemplar relations
defined for this game, as well as results of the check
functions. Because checking the state of relation is a
common operation in a model, we propose some lazy-
evaluation mechanism in the form of acyclic dependency
graph. A relation is true if (1) its check function returns
true, (2) all positive prerequisite relations are true and (3)
all negative prerequisite relations are false. The positive
and negative prerequisites are optional sets of relations,
i.e., they can (and often will) be empty. Such boolean
functions encourage game creators to pick only the most
significant features of the game from the decision-making
perspective. They encourage binary thinking about the
game-state – each relation separates it into two areas.
While it is natural for humans to provide single conditions
of such a separation, it is not obvious how combined
separations will interplay. This is, however, the reason
why computational models are employed. Another useful
feature of boolean relations is a natural and predictable

TABLE I
RELATIONS DEFINED FOR THE GAME SHOWN IN FIGURE 2. VALUES IN

THE SECOND COLUMN DENOTE THEIR CURRENT STATES OF TRUTH. THE
LAST ROW SHOWS ABSTRACT STATE ENCODING (SEE ALSO FIGURE 3).

Boolean Relation Current Result
Red Soldier can see Blue Soldier 1

Red Soldier can see Green Soldier 0
Blue Soldier can see Red Soldier 1

Blue Soldier can see Green Soldier 1
Green Soldier can see Red Soldier 0
Green Soldier can see Blue Soldier 0
Red Soldier able and ready to shoot 0
Blue Soldier able and ready to shoot 1

Green Soldier able and ready to shoot 1
Red Soldier is alive 1
Blue Soldier is alive 1

Green Soldier is alive 1
Binary encoding 101100011111

Decimal encoding 2847

way of controlling the complexity of the model. Finally,
properly defined “check functions” can be reused among
various games. It is worthwhile noticing that relations
defined by game creators imply certain clustering of
states. We expect these clusters to represent a “similar”
situation from the decision point of view. The desirable
property is as follows: if we took any specific fine-
grained state that belongs to a cluster, then the optimal
actions to be taken by the agents (by means of some
measure such as game creator’s expectancy) are the same
or at least similar no matter how we chose the specific
state. Looking at this from the actions’ perspective – the
actions should be robust relative to clusters. However, it
is possible for an action to be optimal in many clusters
and it is not a problem for the method. Given the example
from Figure 2 and Table I, let us consider the action of
Red Soldier shooting Blue Soldier. Such an action could
be optimal when both soldiers are alive, Red Soldier
can shoot, Red Soldier can see Blue Soldier while Blue
Soldier cannot see Red Soldier. In such a case, even if we
considered more detailed information about the current
game-state, no other action should be optimal.

2) FreeGameObjects are any objects that relations’ check
functions may operate on. Their states together represent
state of the game for simulation purposes. The only
requirement on the structure of FreeGameObjects is that
they need to implement a reset() function that resets their
state to the starting one in the game. The MCTS algorithm
will take advantage of this function.

3) Agents are objects that perform actions in the game.
Each agent is provided with a function that determines
available actions based on the relations, which are true.
The MCTS algorithm will be selecting actions for agents
in the selection and simulation phases. In the model,
each agent also contains a team/player identifier. It is
used only for backpropagation purposes: agents that share
a team/player also share the score. For implementation



Fig. 3. Comparison of classical MCTS (on the left) with granular MCTS (on the right).

reasons, agents are assumed to be immutable from the
game creator’s perspective. However, it is possible to
create both FreeGameObject and an Agent representing
the same concept in the game.

4) Actions are prepared by game developers by inheriting
the base action class. Actions are taken by Agents and can
modify FreeGameObjects or themselves. In the proposed
implementation, an action consists of three methods:
GetRemainingTime() – the estimated time to complete;
Update(deltaTime) – possible place to apply partial result
and/or internal state of the action and OnCompleted(). We
explain the concept of time in the model in Section V-A.

5) Terminal function checks whether the simplified game
has reached the end. Compared to the actual game, this
might happen after some important event in the game
occurs. For example, a simplified game might represent
a single battle in a strategy game.

6) Score function assigns a numerical score to each player
or team of players defined in the game. The higher the
score, the better for the player.

V. GRANULAR MCTS GAMES: THE METHOD

The model that was introduced in the previous section serves
as an input to the algorithms that are aimed at finding the
optimal action policy. In case of real-time video games, the
complete optimal policy is not usually required. Instead, the
problem simplifies to finding the next action to be undertaken
by each agent. Below, we focus on challenges that are unique

to real-time games and do not exist in combinatorial games –
continuous actions with non-instant effects possible.

A. Continuous Actions

To cope with continuous actions with non-instant effects,
we have made a few assumptions. First of all, we introduced
virtual time to the MCTS algorithm. Actions have time to
completion measured in these virtual time units. Each agent
updates its active action, i.e., the currently chosen action that
is not yet completed. At the start and once the agent’s action
is completed, it is required to choose an action among the
available ones. The choice is driven by the MCTS algorithm.
Second, whenever a simulation using the model is performed,
it loops over all active actions (one per each agent) and
calculates the minimum time of completion, i.e., the smallest
time needed for any action to finish. The simulation advances
by that time and each action is notified about the elapsed
time commonly denoted to as “delta time” in games. Upon
this notification, an action may update or finish and it is
guaranteed that at least one action will be finished, because
this is how the delta time was calculated. Both the update or
finish methods of any action may alter the game state, however,
the game state cannot be affected in any other place. This is
one of our simplifications and design choices. As a result,
the rule of thumb is that actions should be implemented in a
generic enough way to apply its effects either upon termination
or elapsed time. We leave the choice to game creators as
some actions such as movement might require partial updates



whereas the others such as pushing a button might have just an
instant effect on termination. However, actions cannot report
too long time to completion if legality conditions of continuing
the action might change often. This problem is common to
physics engines [25], when the simulation step is too long and
it skips through important events that would happen between
two steps. Thus, we suggest to provide game creators with
a mechanism to control the simulation step dynamically. We
achieve this by allowing an action to change its time to
completion in the update method. For instance, if an action’s
time left equals 0, the action has one more chance to increase
it. Only if the action does not use this opportunity, it will be
terminated. This mechanism allows to tune the simulation step
span dynamically based on arbitrary game situation.

Figure 4 illustrates the idea of simulating to the nearest
action expected to complete. Whenever a simulation is paused,
which is exactly when an action is expected to complete, all
relations are checked and the current state is captured.

B. State Capturing

This is the process of generating an abstract state in its
formalized representation based on actual unstructured states
of free game objects. The abstract state is a vector of 32-
bit integer numbers constructed as follows. First, the state of
satisfaction of each relation is determined using the under-
lying “check functions” and optional additional constraints –
positive and negative predecessors. Let n denote the number
of relations and ri ∈ {0, 1} denote the truth value for i-th
relation. The state of all relations can be represented by:

R = [r0, r1, r2, ..., rn−2, rn−1]

Now, let us introduce the encoding to decimal numbers. As
we encode the elements from R, hence the symbol deR:

deR(i, j) =

j−1∑
k=0

(ri+k ∗ 2k); j > i

Finally, the abstract state is encoded as a vector of 32-bit
numbers in such way, to cover all relations. For instance, if
there are up to 32 relations, this vector will have one element.
If there are more than 32 relations but less than 64, there will
be two elements in the vector:

S = [deR(0, 31), deR(32, 61), ..., deR(32 ∗
⌈ n

32

⌉
− 32, n)]

Such vectors are stored in the so-called transposition table
(TT) [26]. One of the most important properties of our
approach is that not only it induces a certain way of simplified
thinking about the game, but also it allows to implement
the equality check (equals()) and hashing (hash()) functions,
respectively, in an automatic manner, completely hidden from
the game creators. These two functions have been often prob-
lematic, counterintuitive and inefficient for implementation.
They are, however, crucial to fast retrieval and insertion of
states to the transposition table. In our approach, both can be
performed in the amortized O(1) time.

Fig. 4. The simulation advances to the action that is next to complete. Each
time an action is completed, the abstract state representation is captured.

C. MCTS Iteration

Both the selection and Monte Carlo phases perform a
game simulation because it is not possible to apply actions
directly on the MCTS tree level without simulating them.
This is a different scenario than a classical usage of MCTS,
where the selection phase could start from an arbitrary node
(representing state in the game), traverse an edge and proceed
to a children node instead of explicitly applying the action
represented by this edge. Traversing an edge and applying
an action is equivalent, if and only if nodes contain full
information required to perform the game logic and actions
are deterministic. This is not possible in the proposed granular
approach, because nodes in the tree store only an abstract
encoding that does not allow for performing full game logic
such as determining available actions. Abstract encoding is
just a generalized static snapshot of the game-state. However,
there are granular models that allow for performing search on
hierarchical granular states, e.g. [27].

Although both the selection and simulation phases simulate
the game in order to proceed, only the former one captures
the consecutive visited states. A pseudocode of a single MCTS
iteration is shown in Figure 5 and discussed below:

1) chooseActionsForAgents: For each agent that does not
have an action chosen at the moment, one is selected
according to the given policy.

2) selectionPolicy: The formula responsible to select an
action based on its statistics so far in the selection phase.
We use the UCT method from Eq.1.

3) simulationStep: The simulation advances by deltaTime
to the nearest action’s expected time of completion. All
the game logic is applied here, the state is updated.

4) capture: The abstract state representation is generated
according to the description in Section V-B.

5) tt: This variable denotes transposition table that stores all



abstract state representations visited in simulation phases
of the MCTS algorithm.

6) selectionFinished: The selection phase is finished once
such a state is captured which has not existed before in
transposition table.

7) updateHistory: Visited states and new chosen actions are
appended to a list.

8) terminalFunction: Provided by the game developer. The
game has ended.

9) playoutPolicy: Also called “default policy” – a way of
choosing actions in the MCTS simulation phase. Typi-
cally, it is a uniform random distribution of actions.

10) scoreFunction: Provided by the game developer. Returns
a vector of game’s outcomes for each player (team).

11) propagate: A method that updates the respective statis-
tics of actions chosen by each agent during this iteration
of the MCTS algorithm. The statistics include the scores
and the numbers of visits.

D. Game-MCTS-Game Translation

The approach proposed in this paper assumes the three
following levels of granularity:
1. Fine-grained level: This is the actual game.
2. Coarse-grained level: Abstract simplified game.

2.1 Simulation level: Unstructured state of all free game
objects + actions. This level allows for simulating a
simplified game.

2.2 Decision (statistics) level: Encoded states by relations
+ actions. This level is only for storing statistics and
choosing actions based on state encodings. It does not,
however, allow to simulate the game by any means.

The communication from the fine-grained game level (1.) to
the abstract game representation (2.1) is performed at the
beginning and only once per algorithm’s execution. The ab-
stract representation is instantiated dynamically in the moment
game creator chooses to. It requires the six types of elements
described in Section IV to be properly set up in the game’s
code, what gives the most flexibility. However, automatic
translation might be an interesting future research topic, some-
what comparable to the ideas take from computing with words,
whereby translations between “real” and “abstract” worlds are
assumed to work smoothly in both directions [28]. It is also
possible to take a modular approach to define simplified games
with the elements as building blocks so they can be reused
each time a simplified game is to be instantiated.

The communication from the simulation (2.1.) to the de-
cision levels (2.2.) has been described in Section V-B. In
essence, the decision level takes a higher-level snapshot.
The backward communication, i.e., from (2.2.) to (2.1.) is
straightforward based on actions. The actions are shared
among both decision and simulation layers with the same level
of granularity. Based on the statistics, the MCTS algorithm
chooses an action to be applied in the simulation.

Finally, when the time for decision elapses, there is commu-
nication from the decision level (2.2.) back to the actual game

Fig. 5. Pseudocode of a single MCTS iteration using the granular model.

level (1.). At this point, the MCTS has an action candidate for
each agent in the game. The action is represented in terms of
the simplified model (2.), so the final task is to translate this
action to the finer-grained level. We propose an interface for
creators that allows for three ways of doing so:

1) One-to-one action mapping: If a game is simple enough,
actions in the model might correspond directly to the
atomic game actions. The granular model might still sim-
plify the game in other areas such as state representation,
game duration, terminal condition, etc.

2) Specialize action: In this variant, the idea is that the
action from a simplified game is general and needs to
specialized in the form of a series of atomic actions.
For example: the general action might be “go to the
grandmother’s house”. The realization might be a series
of actions [“take the key”, “go to the forest”, “take the
road left until you find a big tree”, “turn right”, “open
the door using the key”].

3) Achieve goal: Herein, the action from a simplified game
denotes a general thing to do – a subgoal in the game. For
example, “invade the opponent” can be treated as a goal
to achieve. Such a goal must be solved and translated
to actions to perform by some external algorithm. In our
implementation of the proposed approach, we recommend
using the Utility-AI system for this task.

VI. DISCUSSION

We discussed a need for granular computational models that
fuel AI in games. Although there exist some notable games
such as Go [1], [9], for which a more direct (non-granular,
non-hierarchical) approach is proven to be successful, this is
not the case in the realm of real-time video games [19].



We proposed a computational model called a granular game
model, which is based on boolean relations describing the
original game environments in a simplified fashion. The model
is convenient for implementation and will be part of our
currently developed game AI library [2]. We also introduced
a modified MCTS algorithm tailored for the proposed model.
The algorithm takes an abstract representation of a game,
performs calculations and returns abstract actions to be taken.
Those actions are translated, if needed, to a finer-grained level
of detail, following the ideas of information granulation and
computing with words [18], [27]. Some details of possible
realizations of such translation are shown in the paper.

Our future plans include further improvements of the pro-
posed approach, commercial implementation of the presented
ideas, as well as research on multi-resolution granular models.
We intend to continue comparing our methodology with other
applications that take an advantage of abstracting higher-
level states and actions for game modeling purposes [28].
We will also introduce analogous mechanisms of information
granulation into our other research projects related to real-time
game analytics and player-oriented advisory systems [4].

Actually, human players and game creators have a lot in
common, as both communities seem to need intuitive “natural
language interfaces” to communicate with game environments.
Developing methods for such communication requires solving
many challenges. On the other hand, it gains a lot of interest
in different fields of science and industry. For instance, let us
refer to [29]: Causal inference requires two additional ingre-
dients: – a science-friendly language for articulating causal
knowledge, and – a mathematical machinery for processing
that knowledge; and [30]: Tomorrow, I believe, every biologist
will use computer to define their research strategy (...), and
extend their experimental observations – through exploratory
discovery and modeling. With these two citations in mind,
let us conclude this paper with a statement that the proposed
granular games can be treated as an example of a broader trend
devoted to simplified modeling and reasoning about complex
phenomena in both, physical and digital worlds.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the Game of Go with Deep Neural Networks
and Tree Search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[2] M. Świechowski, T. Tajmajer, and A. Janusz, “Improving Hearthstone
AI by Combining MCTS and Supervised Learning Algorithms,” in
Proceedings of IEEE CIG 2018, 2018, pp. 445–452.

[3] A. Skowron and A. Jankowski, “Rough Sets and Interactive Granular
Computing,” Fundamenta Informaticae, vol. 147, no. 2-3, pp. 371–385,
2016.

[4] A. Janusz, D. Ślęzak, S. Stawicki, and K. Stencel, “SENSEI: An
Intelligent Advisory System for the eSport Community and Casual
Players,” in Proceedings of WI 2018, 2018.

[5] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
Survey of Monte Carlo Tree Search Methods,” IEEE Transactions on

Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43,
2012.

[6] L. Kocsis and C. Szepesvári, “Bandit Based Monte-Carlo Planning,” in
Proceedings of ECML 2006, 2006, pp. 282–293.

[7] A. Bai, S. Srivastava, and S. Russell, “Markovian State and Action
Abstractions for MDPs via Hierarchical MCTS,” in Proceedings of
IJCAI 2016, 2016, pp. 3029–3037.

[8] J. Hostetler, A. Fern, and T. Dietterich, “State Aggregation in Monte
Carlo Tree Search,” in Proceedings of AAAI 2014, 2014, pp. 2446–2452.

[9] S. Gelly, L. Kocsis, M. Schoenauer, M. Sebag, D. Silver, C. Szepesvári,
and O. Teytaud, “The Grand Challenge of Computer Go: Monte Carlo
Tree Search and Extensions,” Communications of the ACM, vol. 55,
no. 3, pp. 106–113, 2012.

[10] B. Arneson, R. B. Hayward, and P. Henderson, “Monte Carlo Tree
Search in Hex,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 2, no. 4, pp. 251–258, 2010.

[11] D. Robles, P. Rohlfshagen, and S. M. Lucas, “Learning Non-Random
Moves for Playing Othello: Improving Monte Carlo Tree Search,” in
Proceedings of IEEE CIG 2011, 2011, pp. 305–312.

[12] O. Syed, “The Arimaa Challenge: From Inception to Completion,”
Journal of the International Computer Games Association, vol. 38, no. 1,
pp. 3–11, 2015.

[13] F. Teytaud and O. Teytaud, “Creating an Upper-Confidence-Tree Pro-
gram for Havannah,” in Proceedings of ACG 2009, 2009, pp. 65–74.

[14] M. H. Winands, Y. Bjornsson, and J.-T. Saito, “Monte Carlo Tree Search
in Lines of Action,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. 2, no. 4, pp. 239–250, 2010.

[15] M. Świechowski and J. Mańdziuk, “Self-Adaptation of Playing Strate-
gies in General Game Playing,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 6, no. 4, pp. 367–381, 2014.

[16] J. Levine, C. B. Congdon, M. Ebner, G. Kendall, S. M. Lucas, R. Mi-
ikkulainen, T. Schaul, and T. Thompson, “General Video Game Playing,”
Dagstuhl Follow-Ups, vol. 6, 2013.

[17] S. Tsumoto, H. Iwata, S. Hirano, and Y. Tsumoto, “Similarity-based
Behavior and Process Mining of Medical Practices,” Future Generation
Computer Systems, vol. 33, pp. 21–31, 2014.

[18] L. A. Zadeh, “A New Direction in AI: Toward a Computational Theory
of Perceptions,” AI Magazine, vol. 22, no. 1, p. 73, 2001.

[19] M. Buro, “Real-Time Strategy Games: A New AI Research Challenge,”
in IJCAI 2003, 2003, pp. 1534–1535.

[20] A. Krasuski, A. Jankowski, A. Skowron, and D. Ślęzak, “From Sensory
Data to Decision Making: A Perspective on Supporting a Fire Comman-
der,” in Workshop Proceedings of WI-IAT 2013, 2013, pp. 229–236.

[21] J. G. Bazan, “Hierarchical Classifiers for Complex Spatio-temporal
Concepts,” in Transactions on Rough Sets IX. Springer, 2008, pp.
474–750.

[22] S. H. Nguyen, T. T. Nguyen, M. S. Szczuka, and H. S. Nguyen,
“An Approach to Pattern Recognition Based on Hierarchical Granular
Computing,” Fundamenta Informaticae, vol. 127, no. 1-4, pp. 369–384,
2013.

[23] M. Nagamachi, “Kansei Engineering and Rough Sets Model,” in Pro-
ceedings of RSCTC 2006, 2006, pp. 27–37.

[24] L. A. Zadeh, Computing with Words – Principal Concepts and Ideas.
Springer, 2012.

[25] T. Erez, Y. Tassa, and E. Todorov, “Simulation Tools for Model-based
Robotics: Comparison of Bullet, Havok, Mujoco, Ode and Physx,” in
Proceedings of IEEE ICRA 2015, 2015, pp. 4397–4404.

[26] A. Kishimoto and J. Schaeffer, “Transposition Table Driven Work
Scheduling in Distributed Game-Tree Search,” in Proceedings of AI
2002, 2002, pp. 56–68.

[27] J. Luo and Y. Yao, “Granular State Space Search,” in Proceedings of
Canadian AI 2011, 2011, pp. 285–290.

[28] A. Sinha, F. Fang, B. An, C. Kiekintveld, and M. Tambe, “Stackelberg
Security Games: Looking Beyond a Decade of Success,” in Proceedings
of IJCAI 2018, 2018, pp. 5494–5501.

[29] J. Pearl, “Causal Inference in Statistics: An Overview,” Statistics Sur-
veys, vol. 3, pp. 96–146, 2009.

[30] J. C. Wooley, “Foreword,” in Computational Modeling of Genetic and
Biochemical Networks (Computational Molecular Biology), J. M. Bower
and H. Bolouri, Eds. The MIT Press, 2004.


