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Abstract—Information granulation plays an important role in
the process of scaling up modern machine learning and knowl-
edge discovery algorithms. By employing compact descriptions of
granules – whereby granules are defined as collections of original
data elements gathered together by means of their similarity,
proximity or functionality – one can drastically accelerate com-
putations and, moreover, make the results of those computations
more meaningful for domain experts.

In this paper, we summarize some of the feature space gran-
ulation approaches introduced by now. We discuss the meaning
of similarity, proximity and functionality while considering the
granules of physically existing or potentially derivable attributes.
We also show several examples of utilization of the granulation
structures defined over the feature spaces in the feature selection
algorithms. As a case study, we consider the algorithms developed
within the theory of rough sets, aimed at finding irreducible
subsets of attributes that are sufficient to distinguish between
the cases belonging to different target decision classes.

Index Terms—Feature Selection, Information Granulation,
Rough Sets, Attribute Clustering, Attribute Hierarchies

I. INTRODUCTION

Information granulation and the construction of a granular
system for a given data set is frequently portrayed as a
procedure of zooming in and out on the data or, in other words,
changing the data “resolution”. Depending on the chosen level
of granularity, some data items (objects, cases, instances)
become indistinguishable. Hence, the “length” of the data is
altered, which corresponds to possible reduction of the storage
and processing resources. Operating with data granules is
common in physics, photography and many other fields. It
becomes present in machine learning and data mining as well.
It is also worth mentioning that the idea of zooming in and
out – i.e., switching between different levels of information
granularity – is popular in the area of online analytical process-
ing (OLAP) in databases. However, one should remember that
data granularity can have different meanings. In traditional
databases, by granular data one usually means the most
detailed, low level, exact data representation. On the other
hand, in the field of granular computing (GrC), the term
granular corresponds rather to the overall methodology of
working with the granules of data or information.

The granular approach to dealing with (massive) informa-
tion systems does not have to be limited to just the length/vol-
ume dimension of the data set. It can also be used to modify,
reduce and transform the “width” and “depth” of information.
In GrC this is sometimes called variable granulation and

concept granulation. Just like in a case of the “classical”
granulation, where data objects are combined into more com-
plex entities, attributes in data can be granulated by using
similarity, distance or correlation between them. In particular,
by constructing granules over the space of attributes in the
data set it is possible to reduce dimensionality. In the simplest
form it can be used to replace multiple features/dimensions
by just one representative of the corresponding granule. A
more complex, yet still similar approach is represented by a
reduction based on an information function and discernibility,
typical for the theory of rough sets, where the original set of
attributes is replaced by a reduct, i.e., a subset that carries the
same amount of important information.

The attribute granules can take various forms. It is possible
to group or cluster features on the basis of their relationship,
and it can be done in a parameterized manner. For example,
we can produce various versions of granulations depending
on the choice of cutoff value after the original attributes
are hierarchically clustered. In this context, it is important
to have the means of assessment of the resulting granules,
similar to those developed for standard data clustering. By
making the feature selection process aware of the underlying
granular structure of attribute space one can make better use
of the knowledge contained therein. This in turn may lead to
selecting the sets of features that are not only optimal from the
perspective of some mathematical criteria but are also more
useful for interpreting knowledge hidden in the data.

In this paper we discuss, using some examples of real-life
applications, how the concept of granulation can be made
useful in selecting and engineering features on large and
possibly complex data sets. We show how to utilize the
intrinsic properties of the data and underlying problem as well
as background/domain knowledge for the purpose of building
granular representation of attributes. All the provided tools and
examples are devised to work with data sets that are very large
in terms of the number of objects, as well as the number and
complexity of features. Thus, we address at least some of the
challenges posed by the Big Data paradigm.

Particular contributions made by this paper are concentrated
around two aspects. First, we put forward a framework for
expressing granules in an attribute space. Therein we include
original ideas for discovering and managing similarities be-
tween attributes for the purpose of constructing granules. Fea-
ture granules can be induced by, e.g., hierarchical clustering



1807

on attributes or analysis of so-called heat maps that convey
the knowledge about attribute interchangeability. On the other
hand, we show that meaningful granulations can be derived
also according to other prerequisites, such as proximity or
common functionality of the considered features.

The second contribution refers to a general algorithmic
framework for performing feature selection on top of a gran-
ular representation of attribute space. Our methodology is
devised in such a way that it caters for various types of
granules and various goals of feature selection. The purpose is
to perform a kind of granular attribute selection that exploits
to the fullest semantical relationships between variables. The
proposed methods are designed in such a way that it is possible
to deal with large and complex data sets. By taking into
account a given granulation of attributes, we can configure
our algorithms to achieve faster convergence and, moreover,
we obtain natural means to make use of efficient, parallelized
computational schemes such as MapReduce.

The paper reviews the existing ideas related to handling
massive and complex data sets by means of their granulation
(decomposition, clustering, etc.) and simplification (reduction,
summarization, etc.). It starts with outlining relevant prior
research in Section II. In Section III, we lay foundation
for our granular approach to feature selection by explaining
how the granules can be formed and interpreted. Section
IV brings the centerpiece of this work – a feature selection
framework that is able to take into account the given attribute
granulations. Finally, Section V outlines some ideas related
to combining the proposed framework with the elements of
iterative MapReduce. Section VI concludes the paper.

II. RELATED WORK

While the approach presented in this paper was not consid-
ered in the past, at least not in the same extent, it is by no
means detached from the current research in the areas of GrC
and Big Data [1], [2]. In the domain of GrC there is much
work devoted to understanding the granulation process and the
underlying dependencies in data, which has also an influence
on different ways of expressing the notions of relevance and
redundancy in the considered spaces of attributes/features/vari-
ables/dimensions [3], [4]. Further in the paper we concentrate
on various aspects of constructing granules gathering some
subsets of the elements of such spaces and refer to several
examples of the corresponding applications [5]–[8].

From the perspective of the Big Data analytics, an intro-
duction of some hierarchies of granularity into the spaces
of investigated attributes can make the feature selection and
extraction processes more efficient. Tackling the complexity
of large data sets is an issue noticed by many researchers [9],
[10]. The typical challenges associated with Big Data, as sym-
bolized by the presence of “Five Vs”, make things even more
complicated. Besides the complexity and scale of calculations
that affect the required amounts of resources, the superfluous
features may negatively influence the understanding of the data
by the analysts, therefore, affecting their ability to monitor and
tune the knowledge discovery processes [11], [12].

The demand for efficiency and effectiveness in Big Data sce-
narios resulted in a number of approaches to massively parallel
feature reduction [13], [14], as well as highly scalable instance
selection and deduplication [15], [16]. Popular code libraries
like Spark or Mahout provide parallel implementations of
well-known feature selection methods [17]. There are also
approximate implementations of standard algorithms, which
derive heuristic feature evaluation scores from granulated
data summaries [18]. The speed of the feature and instance
selection processes becomes especially important in interactive
approaches [19], whereby, additionally, granular hierarchies
of attributes may help the users to navigate through rich
feature spaces. Introducing approximate computations into the
feature selection processes is – in combination with making
them highly parallel – an example of a more general trend in
machine learning and knowledge discovery [20].

Identification of subgroups of similar variables is especially
important for high-dimensional data exploration [21], [22]. In
this context it is frequently useful to apply the modern algo-
rithms aimed at big data clustering. Several instance clustering
algorithms, like k-means [23] or expectation maximization
[24], have already been implemented in the scalable environ-
ments. There are also some prior results reported on the feature
clustering algorithms that are of particular interest in this paper
[25]. The hierarchies of granules/groups of features can be
constructed using some interactive clustering methods as well
[26]. It is also important to realize that the feature similarity
measures employed in the above clustering approaches should
somehow correspond to the ultimate goal of finding the groups
of attributes that can play mutually comparable roles in the
constructed decision models [27], [28].

In the next sections we discuss the advantages of pre-
grouping of attributes from the perspective of feature selection,
with particular emphasis on the reduct-based decision models
originating from the theory of rough sets [29], [30]. It is note-
worthy that, just as for other popular feature selection meth-
ods, there were some interesting attempts to perform reduct
derivation within the MapReduce framework [31]. The ideas
of scalable performance of feature extraction, in particular
reduct calculation, are most commonly related to decomposing
computations with respect to rows/instances [32]. However, by
introducing the elements of granulation into the feature spaces
we can additionally scale up the algorithms in an “attribute-
oriented” fashion. Surely, such granulation-related ideas could
be considered – besides the algorithms originating from the
theory of rough sets – within the scope of other popular feature
selection/engineering solutions as well [33], [34].

III. PREREQUISITES FOR FEATURE SPACE GRANULATION

In the GrC literature, a granule may have different mean-
ings. One general definition of this basic notion is a collection
of entities which are related through a similarity, proximity, in-
discernibility or functionality [2], [35]. Indeed, if we consider
a granulation of the attribute space, we may find examples of
granules formed using each of those criteria.
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In the context of attribute granulation, two attributes are
usually regarded as similar if they convey similar information
about objects described in the data. For instance, one may
consider similar two attributes whose values in the data are
highly correlated. In fact, Pearson and Spearman correlation
coefficients are commonly used as measures of attribute
similarity for the purpose of attribute clustering [25], [36].
There are, however, some other possibilities as well. For
instance, further in this section we examine an idea of building
similarity of attributes by means of their ability to replace
each other in the constructed decision models. Namely, if an
attribute can be replaced by another without losing important
information about investigated objects, it means that they
complement in the same way the remaining attributes.

The proximity of attributes may have a few meanings as
well. Typically, this term is used as a synonym of similarity.
However, when it comes to granules of attributes, it may also
be understood as a “physical proximity”. For example, in coal
mines, there are many sensors monitoring the safety of miners,
which constantly gather data about the conditions underground
[11]. When analyzing this type of data, it is important to
consider locations of sensors, since readings from closely
co-located devices are inherently correlated [37]. Moreover,
events observed by one group of sensors are detected by other
groups after some time and the delay, as well as the order, in
which different sensors denote the event, often correspond to
the ventilation scheme of the mine. For this reason, as noted in
[7], it is often worth to consider the whole chunks of attributes
corresponding to such proximate sensors. In this way, it is not
only possible to improve readability of the resulting decision
models, but also increase the performance of the whole data
processing chain due to a more efficient utilization of local
buffers for reading data streams [38]. Another practical con-
sideration is the aspect of model robustness and fault tolerance.
In this context, proximity of attributes may be regarded as a
degree of dependency on a specific hardware equipment. For
instance, if one sensor is faulty, all attributes whose values are
dependent on its readings will be unreliable.

It may also be desirable to consider granules of attributes
that share some higher-level properties or that are tied by
constraints imposed by a given application area [5]. Typi-
cally, domain experts associate such attributes with similar
functionalities of investigated objects. Let us consider an
example of the brain MRI data set investigated in [8], whereby
features derived using some parameterized image processing
procedures may be associated with groups of attributes that
take different values for particular objects (these values depend
on particular parameter settings) but describe the same aspect
of the data. Another example of this type of situation is
apparent in the analysis of a stock market. Many financial
experts use technical indices to describe the behavior of stock
prices in time. Such indices (e.g. moving averages, moving
variance, RSI, TDI, stochastic oscillators and many more) have
many parameters, such as the considered time window size.
However, experienced traders would avoid including more than
one or two realizations of any particular index in their models.

TABLE I
AN EXEMPLARY DATA TABLE A WITH A BINARY DECISION.

a1 a2 a3 a4 a5 a6 a7 a8 d

u1 1 2 2 0 0 1 0 1 1
u2 0 1 1 1 1 0 1 0 1
u3 1 2 0 1 0 2 1 0 1
u4 0 1 0 0 1 0 0 1 0
u5 2 0 1 0 2 1 0 0 1
u6 1 0 2 0 2 0 0 2 0
u7 0 1 1 2 0 2 1 0 1
u8 0 0 0 2 1 1 1 1 0
u9 2 1 0 0 1 1 0 0 0

Instead, they would “granulate” the attribute search space and
focus on finding the right sets of parameters (that correspond
to specific attributes) within each attribute group.

The above considerations lead toward several observations.
First, the spaces of features/attributes that require to be granu-
lated can be more complex than a set of columns in a tabular
data. Let us explain it using a terminology of decision tables
that is common for the rough set methods [29]. Therein,
data sets are represented as triples A = (U,A ∪ {d}) with
U denoting a universe of objects/rows, A denoting a set of
attributes/columns and d referring to a distinguished decision
attribute – a target variable. In some real-life scenarios, the set
A may require granulation because of its high cardinality. An
example of such situation can be found e.g. in [26], where an
interactive GUI-based approach for grouping genes-attributes
was introduced. However, in other scenarios the set A may
not exist in a materialized form. We can rather think about a
set A∗ gathering all derivable attributes/features, e.g., wavelet
coefficients in the case of EEG signal analysis [39] or JSON-
driven aggregates defined for a semi-structured data set [40].
Thus, one could think about A∗ as a space of all outcomes
of the feature engineering/extraction techniques applied in a
given application area. We shall treat A∗ (sometimes taking a
simple form of A) as our granulation domain.

The second observation is about the meaning of granules
built over A∗ (or A) from the perspective of data understanding
and decision model construction, including feature selection
studied in Section IV. With respect to data understanding,
it is implicitly assumed that features dropping into the same
granules should be assessed by domain experts as having some
kind of common background, by means of physical, functional
or information-specific comparability. In particular, the infor-
mation level of comparability may correspond to the way, in
which particular features contribute to decision models aimed
at classifying or distinguishing between different states of
target variables. This aspect, as previously mentioned, seems
to be close to the ideas of adapting various data clustering
methods for the purpose of grouping together similarly acting
or replaceable/interchangeable attributes [27]. However, we
also need to remember that all of the above flavors of similarity
need to be coupled with some tangible criteria for assessing
the quality of pre-defined or produced granules [41].

Let us now present two specific examples of the granu-
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Fig. 1. An attribute clustering tree for the data in Table I, obtained using
agglomerative nesting combined with direct discernibility. A cut at any given
tree height produces attribute granulation, e.g., 0.85 results in four granules
G1 = {a1, a4, a7}, G2 = {a3}, G3 = {a2, a5} and G4 = {a6, a8}.

Fig. 2. An attribute clustering tree for the decision Table I, obtained by
combining the agglomerative nesting algorithm with the explicit interchange-
ability function. A cut at height 0.85 would result in only two granules
G′

1 = {a1, a4, a6, a7, a8} and G′
2 = {a2, a3, a5}.

lation based on the attribute interchangeability. Herein we
use illustrations related to the original sets of attributes A,
although similar analysis can be repeated for A∗. In the first
example, two attributes are considered interchangeable if they
let us distinguish or discern between similar sets of pairs
of objects from a data set. This method strongly refers to
the principles of the already-mentioned theory of rough sets,
where the notion of discernibility plays a fundamental role
in deriving dependencies from the data [42]. The following
attribute similarity function, further called direct discernibility,
expresses a ratio between a number of pairs of objects from
different decision classes that are discerned by exactly one
attribute from the considered pair, to a number of such objects
discerned by at least one of the compared attributes.

direct(a, b) = |{(u,u′):d(u)6=d(u′)∧a(u) 6=a(u′)∧b(u)6=b(u′)}|
|{(u,u′):d(u)6=d(u′)∧(a(u)6=a(u′)∨b(u) 6=b(u′))}|

Let us compare a2 and a5 in Table I. In the case of the most of
the pairs of objects from different decision classes, a5 discerns
them only if a2 does. This may indicate that there might be
relatively many pairs of attribute subsets that on one hand,
preserve information about the discernibility and on the other
hand, have a form of B∪{a2} and B∪{a5}, B ⊆ A\{a2, a5}.
Subsets {a2, a3} and {a3, a5} are a good illustration of this
kind of interchangeability. The attributes that are likely to be
interchangeable can be identified by studying a dendrogram
generated by a hierarchical clustering algorithm. An example
of such a tree generated for the data from Table I is shown in
Figure 1. As expected, the attributes a2 and a5 are merged into
a single granule as the second pair. In [6], it was demonstrated
in experiments with the microarray data that the attribute

granulation obtained using this method can facilitate the search
for concise and informative subsets of attributes.

A slightly different approach is centered around the notion
of explicit interchangeability of features in attribute subsets
that are small in size but sufficient to model the target decision
classes/labels. In the above-mentioned theory of rough sets,
such attribute subsets are usually referred as decision reducts.
Intuitively, if two attributes rarely belong to the same subset
but they both often appear together with similar groups of
other attributes, they may be considered interchangeable. In
the opposite situation, when two attributes often belong to the
same subset or appear in a company of completely different
features, it seems reasonable to assume that they convey
different information and thus are not similar. More formally,
this type of attribute interchangeability can be measured using
a co-occurrence frequency matrix F , whose entry in i-th row
and j-th column equals fi,j :

fi,j =
|{k:ai∈ASk∧aj∈ASk}|

|{k:ai∈ASk}|

where ai, aj are attributes, i 6= j and ASk is the k-th
pre-computed attribute subset. All values at diagonal of F
are set to 0. The final values of attribute interchangeability
can be computed as a difference between the similarity of
corresponding feature sets and the frequency, with which the
given features co-occur:

I(ai, aj) = cosine(fi,·, fj,·)− fi,j (1)

In this formula, fi,· and fj,· are vectors of values from i-
th and j-th rows of F , respectively. An example of attribute
granulation based on the explicit interchangeability measure
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Fig. 3. A fragment of a heat map expressing interchangeability of risk factors
(represented as attributes) taken from the AAIA’14 Data Mining Competition.
Granules of attributes are arranged along the diagonal of the matrix.

is shown in Figure 2. In that example, attribute subsets were
defined as all decision reducts of Table I.

The above approach was successfully applied in [43], where
the task was to analyze results of a data mining challenge
aiming at identifying key risk factors for firefighters during
fire&rescue actions. Participants of that challenge submitted
solutions in a form of relevant attribute subsets (each attribute
in the data was interpreted as a factor influencing the risk of
injury). Typically, submitted subsets were small but the anal-
ysis of thousands of solutions using the formula (1) allowed
us to construct a granulation of the risk factors into groups
that were meaningful to domain experts. Figure 3 depicts a
heat map of a distance matrix that was used for this task
in a combination with an agglomerative clustering algorithm
(the distance was computed as 1− I(ai, aj)). Analogous heat
maps could be computed using ensembles of possibly diverse
approximate decision reducts that preserve information about
the decision classes only to some extent and, thus, they can
utilize different groups of attributes to concentrate on different
aspects of approximate data dependencies [44].

IV. FEATURE SELECTION WITH ATTRIBUTE GRANULES

The process of feature selection aims at exploring the
given attribute space A (or A∗) and extracting a relatively
small subset R ⊆ A of attributes that, on the one hand,
are the most relevant and, on the other hand, are sufficient
to solve the investigated problem. Such selection/extraction
process is often conducted by applying statistical tests in order
to determine, which attributes contribute to the constructed
decision model [33]. In some approaches, the attributes are

also analyzed with respect to their interdependencies observed
within decision models [45]. Actually, one may regard the
idea of looking at co-occurrences of attributes in approximate
decision reducts – as mentioned in the end of Section III – as
useful for the purposes of feature selection as well. This shows
that the goals of feature clustering/granulation and selection
can be quite complementary to each other.

In this section, we focus on a slightly different aspect of
combining the above ideas. Namely, we examine to what ex-
tent a pre-computed/pre-defined feature granulation can guide
the process of choosing the most appropriate collections of
attributes. Although the standard feature selection algorithms
are not configured for attributes that are structured or bound
by relationships, it seems to be relatively easy to take such an
additional aspect into account. The knowledge about attribute
granulation can have an important impact on the final subset
composition and, hence, we argue that it should influence the
order, in which we investigate attributes.

For the purpose of further discussion, let us concentrate on a
common approach to conducting a feature selection. Certainly,
we do not claim that all possible methods follow the scheme
below. Nevertheless, in our opinion it is sufficiently general
to explain the benefits of working with attribute granules. For
a given input set of attributes A (or A∗), let us consider a
criterion function C : 2A → {0, 1} whose purpose is simply
to indicate, which subsets of A are already rich enough to
serve as the outcomes of the selection process. In practice,
C may correspond to a collection of criteria reflecting differ-
ent requirements. Additionally, consider an arbitrary heuristic
quality function Q : 2A → R that can be utilized iteratively
to add the most “promising” elements to the constructed
feature subset. Let us note that Q can combine various aspects
of relationships between the selected attributes and a target
variable [34], [46]. Let us also mention that the last item of
the following procedure has strong roots in the theory of rough
sets, where there is a particular focus on the simplification of
decision models learnt from the data [29], [47].

1) While the criterion C(R) is not met by the selected
feature subset R continue the following:

a) Select candidate sets of (subsets of) features
B1, .., Bk to be added to R

b) Evaluate B1, .., Bk with the desired attribute subset
quality measure Q

c) If the best Bx contributes to R, then R← R∪Bx
d) Verify if the criterion C(R) is met

2) Eliminate superfluous attributes from R

Algorithm 1 reflects our generic idea of embedding the addi-
tional knowledge about attribute granulation into the above-
described feature selection process. In each iteration of the
main loop, in order to limit the attribute space A, the subset
of granules {G1, .., Gm} ⊆ G is selected with respect to
the granulation preferences expressed by, e.g., a permutation
σG : {Gσ(1), Gσ(2), ..} (which means that the granule Gσ(1) is
most preferred to draw attributes from). By limiting the search
space using the additional knowledge about attribute granula-
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Algorithm 1 General framework for granular feature selection
Input: G – set of granules, A – attribute space,

C– criterion function, σG – granule preferences
Output: R – selected attribute subset

Initialization:
1: R← ∅
2: while R does not satisfy C(R) do
3: B ← ∅
4: Select granules {G1, .., Gm} ⊆ G with respect to σG
5: Limit attribute space AG ← A ∩

⋃
1≤i≤mGi

6: Generate candidates B1, .., Bk ⊆ AG
7: Evaluate candidates {B1, .., Bk}
8: B ← selectBestCandidate({B1, .., Bk}, ...)
9: if B contributes to R then

10: R← R ∪B
11: end if
12: end while
13: R← eliminateSuperfluousAttributes(R)
14: return R

tion, we may quickly generate a set of candidates {B1, .., Bk}.
After the evaluation of candidates with the correlation, gini
index or other implementation of the function Q, the feature
subset R may be extended if only the selected B contributes to
R. The loop continues until a “good enough” R is collected or
all combinations/candidates are explored. Finally, we conduct
a backward elimination of superfluous attributes.

The presented framework does not enforce any particular
interpretation of the information granules and, thus, different
implementations may vary in a way of their utilization. In
some cases, it may be preferred to select features that belong
to only one, specific granule. For example, the analysis of
coal mine sensor readings [11] may be oriented on the one,
particular mine shaft. In that case, the analysts could generate
granules on the basis of a sensor location and introduce
a constraint that the finally selected attributes should/must
belong to the particular granule(s). In other applications, it
may be convenient to generate an attribute subset that contains
attributes from multiple granules in order to provide higher
robustness [27]. Regardless of the way that we use the attribute
granulation, the general framework is still the same. To give a
better understanding of the abstracted phases of Algorithm 1,
Figure 4 presents its exemplary iteration for the data presented
in Table I and attribute granulation outlined in Figure 1.

Attribute granulation may also influence a feature selec-
tion process with respect to the expected robustness and
resilience of decision models. In real-life applications, we
may observe various anomalies in explored data sets, which
cause a model over-fitting. Some researchers emphasize the
role of appropriate granulation of attributes during feature
engineering in achieving higher stability of the created models.
With that respect, we may refer to several techniques using,
e.g., histograms [48] or the already-discussed clustering [25].
During the decision model construction, there are also some
non-functional factors that could impact the continuity of

Fig. 4. A single loop of a feature selection algorithm for the data referred in
Figure 1, taking into account the knowledge about attribute granulation.

analysis like, e.g., temporal or permanent unavailability of
some sources during on-line data collection [49]. From this
perspective, it is advisable to use diverse feature subsets and
ensemble methods, whereby each of separate decision models
is based on a few attributes but, overall, many attributes are
involved [6]. Thus, it is important to combine the feature
selection approaches relying on the attribute granulation with
some feature subset diversification methods.
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Algorithm 2 Full-granule-oriented version of Algorithm 1
Input: G – set of granules, A – attribute space,

Q– quality function, C– criterion function
Output: R – selected attribute subset

Initialization :
1: R← ∅
2: while R does not satisfy C(R) = 1 do
3: Select granules {G1, .., Gm} ⊆ G
4: Evaluate granules {G1, .., Gm} and pick the best Gx
5: if Gx contributes to R then
6: R← R ∪Gx
7: end if
8: end while
9: R← eliminateSuperfluousGranules(R)

10: return R

In this context, the analysts could utilize feature granulation
in order to achieve more robust and resilient results due to, e.g.,
exploitation of attributes extracted from diverse sources. In
particular, the method outlined by Algorithm 1 could be used
to compose an attribute subset R as a collection of features
from diverse granules. In this case, the attribute reduction
algorithm should aim at achieving feature subsets of minimal
cardinality |R| and also ensure the diversity of granules by,
e.g., maximization of |{G ∈ G : R ∩ G 6= ∅}|. Accordingly,
a specialized configuration of the main loop in the presented
framework can take into account, both, the so-far-selected
features and the granules that are used less often, i.e., granules
Gi that minimize the quantity of |Gi ∩R|.

The feature selection methods should be also able to operate
on the whole granules or their subsets instead of individual
attributes. To some extent, it corresponds to the idea of so-
called decision systems with constraints – the enriched data
representation proposed in [7]. The goal of this approach is
not only to record the presence of granules (called constraints)
but also to make it possible to apply various computational
methods that make use of them. Let us consider Algorithm 2,
where the overall scheme is aligned with Algorithm 1, though
one can notice some simplifications like selecting particular
granules G1, .., Gm as the candidate subsets Bi. Similarly, the
backward elimination concerns removal of the whole granules
instead of individual attributes. In such approaches, as it was
observed also by other researchers, the properties of selected
attribute subsets can depend a lot on coarsening or refining
granules [50]. Therefore, as it was discussed in Section III,
there is a need for a framework allowing the domain experts
and algorithm designers to assess the results of feature selec-
tion/granulation processes from different perspectives.

As we could see above, Algorithm 1 can be treated as a
general umbrella for various approaches aiming at utilization
of the attribute space granulation for the purpose of enhancing
the feature selection process. Surely, there are still several
details to be discussed. First, it is useful to look at different
strategies of validating whether a given attribute sufficiently
contributes to the result R [51]. Second, it is interesting

Fig. 5. A diagram with two significantly different attribute ordering strategies
that take into account granulation of attributes.

to compare the proposed framework with methods based on
attribute orderings. The main idea behind this class of methods
is to iterate along diversified permutations σA over A. Such
permutations can be induced partially with respect to some
heuristic function Q or they can be generated fully randomly
[30]. In the latter case, the procedure is repeated a number
of times and the best of the obtained attribute subsets (or a
bigger ensemble of subsets) is eventually selected.

Figure 5 shows how we can use the knowledge about
granules to influence permutations, e.g., by arranging the
elements of the same granule within consecutive subsequences
or mixing them together as much as possible (by following a
preference permutation σG : {Gσ(1), Gσ(2), ..}). It is important
to note that such two semi-randomized strategies are in a
correspondence to the ideas of operating with regular gran-
ules (Algorithm 2) and maximally diverse attribute subsets,
respectively. This shows that the attribute granulation is easily
applicable to the ordering-based feature selection algorithms,
without a necessity to modify their code. On the one hand, the
described scenarios of “granular ordering” are conceptually
aligned with Algorithm 1. On the other hand, the phase of
selecting granules/candidates can be performed implicitly at a
level of generation of attribute permutations.

V. MAPREDUCE OVER ATTRIBUTE GRANULATIONS

There are at least two more aspects of utilizing the attribute
granulations to improve the feature selection processes, espe-
cially in the context of Big Data. The high velocity and volume
of still-incoming records are often a curse of storage systems
and machine learning algorithms. Furthermore, raw records
are often insufficient for the purpose of predictive analysis
and the process of feature engineering (i.e., switching to A∗) is
commonly employed to construct more relevant attributes [52].
The massively parallel feature engineering methods may be
efficiently performed via the MapReduce programming model
what, in turn, may multiply the initial number of explored
attributes. Still, the question remains how to choose which
attributes should be evaluated. As suggested in [8], the actual
feature selection process can be performed at a level of general
labels of some attribute granules, whereby specific elements
of those granules are not materialized prior to the algorithm’s
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Fig. 6. The attribute lattices reflecting possible feature subsets generated for the exemplary data set. Bold ovals and arrows visualize paths explored during
forward propagation and backward elimination phases. The left lattice corresponds to a single-threaded algorithm. The right lattice shows a parallel version.
Dotted lines emphasize steps omitted in a parallel algorithm comparing to a single-threaded version.

start. This style of hierarchical feature space exploration fits
perfectly Algorithm 1 and its specific configurations.

The execution of a feature selection method may be ex-
pressed as searching through the attribute lattice, as presented
in Figure 6. The left lattice visualizes a stand-alone selection
process, with only a few features involved into the process.
This clearly refers to the above idea of avoiding extracting/-
materializing too many attributes in advance. Let us recall
that our algorithms actually work over the set A∗ of features
that are extractable from the stored data. Thus, the process
of feature engineering should result in computing values of
only those features, which are recognized as important based
on the additional knowledge about their granulation. In other
words, although the corresponding lattice is practically “infi-
nite”, it does not mean that a given algorithm’s run requires
materialization of all potentially involved features.

The second aspect corresponds to parallelization of calcu-
lations, leading towards shortening the time of computations.
This naturally responds to the necessity to handle the enor-
mous velocity and volume of Big Data. Nevertheless, Big
Data is also connected with various issues with respect to
the quality and (in)consistency, that may hamper processing
and eventually affect the accuracy of the analysis. When we
take a look at the attribute lattice presented on the right side
of Figure 6, we see that multiple (bold) paths are explored
and multiple attribute subsets are examined in parallel. As
a result, the parallelization of feature selection allows us to
evaluate more potentially important candidates, which results
in a higher quality of the final outcome. Moreover, it goes well
together with the above-mentioned idea of multiple executions

of (differently initiated) feature selection loops, which are now
conducted in parallel rather than in a serialized fashion.

Models and frameworks for parallel computing focus on
various aspects of data processing. Some of them respond
to high velocity of the data, which makes them closer to
incremental stream processing [38]. Others concentrate on
batch processing models and adapt well-known mechanisms,
such as the apriori-based breadth first exploration of a feature
space [53]. Herein, the MapReduce paradigm seems to be a
good choice to consider [31], [54]. We may distinguish two
popular approaches in this field. One of them implements
the solution as a single job, whereas the other – iterative
MapReduce – encompasses ` consecutive job runs that may
be controlled automatically or manually [55], [56]. One can
think about parallelization of the discussed granular feature
selection methods using both of these approaches.

Let us briefly outline one of possible implementations of
a massively parallel granular feature selection process as an
iterative MapReduce program. Consider ` consecutive iter-
ations, where each of them is based on Algorithm 3. We
propose to work on the transmuted data, i.e., the mappers
are executed on attributes a assigned to a granule Ga and
having a vector Va of values for objects/records in the analyzed
data set. The outcome of a single iteration is a sorted set of
candidate attribute subsets, whereas only n best intermediate
outputs R = {R1, .., Rn} are passed to the subsequent phase.
The map functions are provided with the collection R and the
vector Vd containing values of the decision attribute d. To each
subset Ri there has been assigned granulation preferences σiG,
whereby the diversification of granule-level permutations may
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Algorithm 3 Granular feature selection with iterative MapRe-
duce. In each of `-phases the following program is executed.
Map(Key: a ∈ A, Value: Ga, Va)

1: Given R = {R1, .., Rn}
2: for all Ri ∈ R do
3: if a is relevant to Ri then
4: Ri ← Ri ∪ {a}
5: emit(sortAttributes(Ri), σiG, score )
6: end if
7: end for

Reduce(Key:Ri, σiG, Value: {score, score, ..})
8: emit( Ri, σiG, score )

play a similar role as for the previously discussed attribute-
level permutations. During the evaluation of a, we verify its
relevance to every considered Ri, with respect to a quality
function Q, preferences σiG, or any other factor of interest.
If the performed assessment reveals that a is relevant for Ri
(where relevance may be expressed as a mixture of preference,
contribution, etc.), then the set Ri ∪ {a} is emitted. The role
of reducers is then to aggregate subsets Ri and sort them
according to their score. The whole process ends when the
expected number of feature subsets satisfies C.

The main objective of the above illustrative example of
a MapReduce program is to evaluate a possibly large num-
ber of attribute subsets, in order to reach a higher quality,
compactness and/or diversification of the produced outcomes.
Obviously, parallel programming models allow to implement
the granular feature selection framework in many other ways
[13], [31]. Nevertheless, the major conclusion of this part of
our paper is that the idea of operating on attribute granules
– regardless of their origin discussed in Section III – is
truly worth combining with the principles of parallelization
of feature selection methods with respect to complex spaces
of derivable features and their subsets.

VI. FINAL REMARKS

We presented a particular take on the challenge of devising
a more effective and efficient feature selection methodology.
The main idea behind our approach is to make an intelligent
use of the information granulation paradigm in the context of
aggregating, selecting and engineering attributes (features/vari-
ables/dimensions) that describe the data. The resulting solution
is meant to convey the granular knowledge that is in the data.
At the same time, it is designed to deal with enormous amount
of information that needs to be processed when facing the
kinds of tasks typical for Big Data.

The gist is to operate on attribute granules that are formed
through the use of various knowledge discovery algorithms,
such as, e.g., clustering or interchangeability analysis through
heat maps. In many instances, as exemplified by use cases
discussed in Section IV, granules built over the attribute space
may represent semantic relationships that are important for
domain experts. The proposed feature selection framework,

coupled with the granular structure of attribute space, facili-
tates discovering meaningful knowledge from the underlying
data. This knowledge may be further leveraged in order to
obtain a more comprehensible and user-friendly representation
of the final decision model.

The proposed algorithms for both, granule construction and
feature selection, can make use of various forms of problem
decomposition and parallelization, as outlined in Section V.
They are capable of tackling large spaces of derivable features
and their subsets. Hence, they respond to demand for efficiency
which is central for all approaches to vast amounts of infor-
mation, and may have a significant impact on the feasibility
of granular feature selection.

Some of the next steps towards practical use of granule-
based methodology for dealing with data that is characterized
by high dimensionality, large size and high complexity, may
be directed towards incorporation of domain knowledge into
the process of the granule construction and feature extraction.
In particular, the long-term goal would be to devise methods
and tools that automate this process and at the same time
maintain acceptable level of transparency and human read-
ability. A granular system capable of flexible, comprehensible
and extensible interaction with data scientists who analyzes
massive data sets could be an invaluable tool.

In a shorter perspective, next steps should involve integra-
tion with the existing technologies. While in the paper we have
shown how the MapReduce principles can be employed, there
is a plethora of other techniques that were developed over the
years with Big Data in mind. For example, it could be helpful
to integrate the proposed methods with the existing tools for
management of massive relational data sets (such as Apache
Hive or some approximate database engines). This way, we
could embed the “zoom in/out” operations on attributes into a
convenient RDBMS environment.
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Nguyen, “Key Risk Factors for Polish State Fire Service: A Data Mining
Competition at Knowledge Pit,” in Proc. of FedCSIS 2014, pp. 345–354.
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