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Abstract. We introduce a new rough set inspired approach to attribute selection.
We consider decision systems with attributes specified by means of two layers: 1)
general meta-attribute descriptions, and 2) their specific realizations obtained by
setting up parameters of procedures calculating attribute values. We adopt meth-
ods designed for finding rough set reducts within the sets of attributes grouped
into clusters, where each cluster contains potentially infinite amount of attributes
realizing a single meta-attribute. As a case study, we discuss a rough set frame-
work for multi-spectral Magnetic Resonance Image (MRI) segmentation.
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1 Introduction

Attribute selection is an important step in the process of constructing knowledge repre-
sentation and classification models [1]. In rough sets, this step corresponds to excluding
irrelevant attributes and, as a result, simplifying descriptions of objects in information
systems and decision tables [2]. There are numerous approaches to searching for rough
set reducts – the sets of attributes containing no irrelevant elements [3]. Rough set at-
tribute selection and classification techniques can be also embedded into hierarchical
systems that utilize domain knowledge to approximate complex concepts [4].

In [5], the clustering methods are used to identify groups of attributes that can re-
place each other in reducts. By working with such attribute granules, one can make the
reduct derivation process faster and more intuitive. In this paper, we note that attributes
can be grouped also with respect to other criteria. Quite often, domain experts sketch
some high level attribute descriptions, which then need to get mathematically modeled.
One could actually say that each of such meta-attributes corresponds to a granule of
attributes which are derived using different parameters from the same model.

As a case study, we discuss the problem of MRI analysis [6], which has been already
investigated in the rough set literature from the perspectives of both image segmen-
tation [7] and tissue classification [8]. We outline several examples of meta-attributes
corresponding to different ways of looking at the MRI slices. We show how to run the
process of attribute selection given a huge space of attribute parameterizations, and how
to avoid multiple realizations of the same meta-attributes within single reducts.
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Fig. 1. Granular attribute selection framework

2 Rough Set Reduct Construction

Let us use standard notation to represent data [2]. By a decision system we mean a tuple
A = (U,A ∪ {d}), where U is a set of objects, A is a set of attributes and d /∈ A is a
distinguished decision attribute. We treat attributes a ∈ A as functions a : U → Va. We
say that objects u, u′ ∈ U are discerned by a ∈ A, iff a(u) is different from a(u′). We
say that B ⊆ A is a decision superreduct, denoted by B ∈ S, S ⊆ P(A), iff each pair
of objects discerned by d is also discerned by an element of B. We say that B ∈ S is a
decision reduct, iff there are no proper subsets of B belonging to S.

In practice, the criteria for being a decision superreduct can be formulated in many
other ways adjusted to the types of attributes, expected level of noise in data, and so
on [8]. Generally, we should work with families of approximate decision superreducts
S∗ ⊆ P(A) satisfying the following two conditions: 1) S ⊆ S∗; 2) if B ∈ S∗ and
B ⊆ C, then C ∈ S∗. The first condition means that standard decision superreducts
should be always a special case of any of approximate superreduct extensions. The
second condition means that the considered criteria are monotonic [9].

Superreduct criteria can be related to degrees of information that subsets of attributes
bring about the decision. Let us consider function Id : P(A) → I, where 〈I,�〉 is a
partially ordered space of information degrees. We assume that if B ⊆ C, then Id(B) �
Id(C). We can think about approximate superreducts corresponding to certain levels of
information, i.e., families S∗ ⊆ P(A) such that if B ∈ S∗ and Id(B) � Id(C), then
C ∈ S∗. Surely, for large data sets it is important to work with functions Id that are
easy to compute. It is also useful to develop procedures for computing values of Id(B)
for many subsets B ⊆ A in the same time [10].

For a given function Id : P(A) → I and a corresponding family S∗ ⊆ P(A), the
idea of defining decision reducts is the same as before. We say that B ∈ S∗ is an ap-
proximate decision reduct, iff there are no proper subsets of B belonging to S∗. Fast
derivation of approximate decision reducts containing possibly small amounts of at-
tributes is highly important for representing and utilizing data dependencies. However,
for decision systems with huge number of attributes, approximate decision reducts are
very hard to compute. Also, it is then difficult to interpret which approximate depen-
dencies between attributes and decisions may be meaningful for users.
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Algorithm 1. Superreduct generator.
Input: meta-attributes {C1, ..., Ck}
Output: decision superreduct B ∈ S∗

1 B = ∅; i = 1; fail = FALSE;
2 while B /∈ S∗ or fail do
3 fail = TRUE;
4 select m > 0 random parameter settings for Ci;
5 Imax = Id(∅);
6 amax = NULL;
7 for j = 1,m do
8 generate attribute cij ∈ Ci using the j-th parameter setting;
9 if Id(B ∪ {cij }) �= Imax then

10 Imax = Id(B ∪ {cij });
11 amax = cij ;
12 fail = FALSE;
13 end
14 end
15 if amax is not NULL then
16 B = B ∪ {amax};
17 amax = NULL;
18 end
19 i = (1− i/k) ∗ i+ 1;
20 end
21 return B;

Let us consider a scenario where attributes correspond to the outputs of parameter-
ized feature extraction methods applied for some complex measurements. Such meth-
ods may generate different attributes depending on selected parameters. On the other
hand, such attributes have analogous meaning for users. Reducts containing too many
of such attributes might be considered as ambiguous. Figure 1 presents a framework for
grouping conceptually analogous attributes into clusters and ensuring that calculated
reducts do not contain multiple elements of the same clusters too often. Users can then
focus on general data dependencies more easily. We call such clusters meta-attributes.
Each cluster refers to a feature extraction method and its parameter generator. Thus,
each meta-attribute can be represented by one or many “real” attributes.

Algorithm 1 shows how to construct an ordering of attributes corresponding to the
input meta-attributes. It is a random-greedy approach based on our earlier research [5].
For each meta-attribute, we select several parameter settings and calculate values of the
corresponding attributes. An attribute bringing the highest information gain in terms of
a given information function Id : P(A) → I is selected. We do not assume creation
of a complete decision system. We calculate values of only those attributes which are
selected by the algorithm. The resulting B ∈ S∗, together with an ordering of added
attributes, can be passed to a typical permutation based algorithm for reduct derivation
[8]. However, sometimes B ∈ S∗ cannot be obtained. In such cases, one should revisit
expectations with respect to a reachable level of decision information.
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Table 1. Examples of MRI meta-attributes: SOM (self-organizing map), HC (histogram clus-
tering), EDG (edge detection filter), NBR (neighborhood filter), MSK (image mask filter)

Description Parameters
SOM Performs unsupervised image seg-

mentation
Number of modalities; Number of clusters;
Learning rate; Number of iterations; Radius

HC Performs unsupervised image seg-
mentation based on the image his-
togram

Number of clusters; Bucket size; Minimum
cluster distance; Peak separability; Approx-
imation Degree; Number of clusters

EDG Detects boundaries between tissues Noise Threshold
NBRSOM For boundary regions assigns major

SOM tissue class label.
Window shape; Window size

NBRHC For boundary regions assigns major
HC tissue class label

Window shape; Window size

MSK Encodes voxel position relative to
brain central point

Number of mask regions; Region radius
size; Background threshold

3 Rough Set Inspired MRI Segmentation

As a case study, let us present a rough set based approach to human brain MRI seg-
mentation [6]. Segmentation is the process of assigning class labels to data containing
spatially varying information [7]. As an example, we can consider the Simulated Brain
Database (SBD) containing 3-D volumetric multi-spectral MRI images in three modal-
ities (T1, T2, PD).1 In this case, the goal is to classify each voxel within a brain image
slice to one of tissue classes such as: cerebrospinal fluid (CSF), gray matter (GM) and
white matter (WM), background (BCG), as well as others (skin, bone, fat).

In order to define meta-attributes, we can use several feature extraction methods.
Combined with specific parameters, each of those methods generates an attribute la-
beling voxels with specific values. At the conceptual level, each meta-attribute provides
some domain related information about the analyzed images. On the other hand, feature
extraction parameters are often very technical, not necessarily understandable by med-
ical experts. We need to separate those two realities and provide tools allowing users to
analyze attribute dependencies without worrying about any technical settings.

The primary source of information is the voxel magnitude value registered in three
MRI modalities. Using this source, we can construct more advanced attributes. In our
research, we employed two unsupervised clustering algorithms: a self-organizing map
(SOM ) and our own method for image histogram discretization [8]. We also utilized the
open source Insight Segmentation and Registration Toolkit (ITK)2 providing a library
of image filters. One can employ such filters for edge detection, voxel neighborhood
analysis and relative voxel positioning against a brain center. Each of considered fea-
ture extraction methods can be applied separately to all image modalities and can be
considered as a meta-attribute describing a single modality. Table 1 summarizes meta-
attributes and possible parameters used within our segmentation framework.

1 www.bic.mni.mcgill.ca/brainweb
2 www.itk.org

www.bic.mni.mcgill.ca/brainweb
www.itk.org
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Fig. 2. Application of granular attribute selection framework in MRI image segmentation

Figure 2 illustrates the resulting procedure. Let us discuss how it differs from our ear-
lier approach described in [8]. First of all, as already mentioned in the previous section,
we do not create a decision system containing all attributes and their values. Instead,
we calculate only those attributes which seem to be sufficiently relevant according to
our heuristic attribute selection procedure outlined by Algorithm 1.

Furthermore, some of considered attributes correspond to simple classifiers (e.g.,
SOM ) that need to be trained in order to generate values for particular voxels-objects.
In our previous studies, we trained each of such classifiers-attributes separately, search-
ing for parameters providing the best outcomes. However, such an approach might lead
to over-training, with no ability to search for possibly coarser realizations of particular
meta-attributes that could work well together within a dynamically constructed decision
reduct. Actually, there is a strong analogy between this way of looking at reducts and
a well known methodology of working with ensembles of weak local classifiers [1]. In
case of framework outlined in this paper, we do not train such local classifiers at all.
Instead, we assume that the attribute selection and reduction mechanisms will set up
combinations of parameters for all meta-attributes within a single procedure.

Last but not least, let us emphasize that in our approach we do not store the trained
attributes-classifiers but only their parameter settings. Then, for a new image, we run
the related feature extraction method with the previously learnt parameters. Therefore,
it is important to remember that parameter settings corresponding to attributes selected
by Algorithm 1 should not be applied to the previously unseen images too straightfor-
wardly. Such an approach might be suitable for images of comparable characteristics.
However, if images are expected to vary, we should rather attempt to express parameter
values as corresponding to some local image properties. For example, a noise threshold
used for realization of the EDG meta-attribute can be expressed in terms of the mean
magnitude computed over all voxels in a given image. This way, our MRI segmentation
model should be more stable and resistant with respect noises and anomalies.
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4 Conclusions

We presented a new rough set inspired approach to attribute selection, for decision sys-
tems created using parameterized attribute value generation procedures. We described
two levels of formation of attributes: meta-attributes serving as conceptual descriptions
of general feature extraction methods, as well as their specific realizations constitute
an actual decision system. As a case study, we presented an extension of our previous
MRI image segmentation framework. In future, we will investigate usefulness of our ap-
proach also in other areas, such as predictive analytics based on sensor measurements
and knowledge discovery based on text reports.
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