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Abstract We outline the processes of intelligent creation and utilization of granulated data
summaries in the engine aimed at fast approximate execution of analytical SQL statements.
We discuss how to use the introduced engine for the purposes of ad-hoc data exploration
over large and quickly increasing data collected in a heterogeneous or distributed fashion.
We focus on mechanisms that transform input data summaries into result sets representing
query outcomes. We also illustrate how our computational principles can be put together
with other paradigms of scaling and harnessing data analytics.

Keywords Big data processing · Approximate query processing · Data summarization ·
Granular computing · Machine intelligence

1 Introduction

There is a growing need to explore big data sets. Most companies address this challenge by
scaling out resources. However, this strategy is increasingly cost-prohibitive and inefficient
for large and distributed data sources. On the other hand, people are realizing that the tasks
of data exploration could be successfully performed in at least partially approximate fashion.
This way of thinking opens new opportunities to seek for a balance between the speed,
resource consumption and accuracy of computations. In the case of an approach introduced
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in this paper – an engine that produces high value approximate answers to SQL statements
by utilizing granulated summaries of input data – such a new kind of balance possesses very
attractive characteristics.

The presented engine captures knowledge in a form of single- and multi-column data
summaries. It collects chunks of newly gathered data and builds summaries for each chunk
separately. Unlike in standard databases, the considered query execution mechanisms do
not assume any access to the original chunks. Those chunks can be available in a broader
application framework but the primary goal of our engine is to work with summaries, as
illustrated by Fig. 1. Namely, for a given query received from an external tool, each consec-
utive data operation (such as filtering, joining, grouping, etc.) scheduled within the query
execution plan is performed as a transformation of summaries representing its input into
summaries representing its output.

The engine allows its users to achieve approximate – yet sufficiently accurate – analytical
insights 100-1000 times faster than traditional solutions. From an architectural perspective,
it comprises two layers: 1) the knowledge capture layer responsible for software-agent-style
acquisition of data summaries and 2) the knowledge transformation layer responsible for
utilizing already-stored summaries to produce fast approximate answers to ad-hoc queries.
The first layer looks through potentially distributed and heterogeneous data sources, leaving
the actual data in-place. The second layer operates on the output of the first layer, removing
the need of accessing the original data, which would be far too costly and simply not needed
for analytical purposes.

Several organizations have been already working towards embedding our solution into
their projects. Figure 2 illustrates its benefits in particular areas, where the emphasis is put
on the speed of query-based analytical processes and the ability to integrate broader aspects
of the data. Thanks to informative richness of summaries, the approximate results can be

Fig. 1 High-level comparison of traditional approach to relational query processing versus our approach
based on computing with data summaries
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used for insightful decisions. Moreover, our analytical testing environment allows the users
to investigate similarities of approximate answers compared to query outputs that would be
extracted in a standard way from the atomic data.

Properties highlighted in Figs. 1 and 2 can be also considered from the perspectives of
business intelligence or cognitive computing, where there is an ongoing discussion whether
in all use cases query answers must be exact and whether one can afford to wait for them.
Furthermore, in many scenarios, the analysis needs to be conducted over the data collected
in a lake or cloud environment. Traditional solutions would then require moving / reorga-
nizing large amounts of the data to make them efficiently accessible. The data sets might
be queried in their original locations but this makes it hard to jointly analyze diverse data
sources in single operations. Thus, the ability to work with easily manageable summaries
brings a great advantage.

The paper is organized as follows. In Section 2, we discuss our previous developments and
some state-of-the-art approaches in the area of approximate query processing. In Section 3,
we discuss the details of the captured summaries and provide some means for their analysis.
In Section 4, we describe examples of the knowledge transformation operations that produce
new summaries reflecting intermediate stages of query execution. In Section 5, we discuss
the final stage of assembling approximate answers, namely, generating query results from
the produced summaries. In Section 6, we report our empirical experiences gathered to date.
In Section 7, we outline some of other aspects still in development. Section 8 concludes the
paper.

Although our main aim is to discuss the engine from a practical viewpoint, let us also
emphasize that it relies on some significant scientific novelties. It is particularly visible in
Section 4, where we adapt the mechanism of tree-based belief propagation to populate the
WHERE-related changes in data summaries, by introducing new methods of dynamic deriva-
tion of optimal trees from input summaries, extending the standard propagation model to
let it work with more complex filter conditions, using partial knowledge about data-derived
joint probabilities to efficiently run recursive calculations and producing output summaries
representing the filtered data for the purposes of further transformations reflecting execution
of a given SELECT statement.

Fig. 2 Examples of use cases related to deployments of analytic databases (Glick 2015)
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2 Related works

In this section, we first refer to our own previous experiences and then proceed with a brief
discussion related to other methodologies, as well as a more general scope of approximate
querying in data analytics.

2.1 Historical background

To some extent, the approach introduced in this paper originated from the architecture of
our earlier database engine, which clustered the incoming rows into so-called packrows,
further decomposed into data packs gathering values of particular columns (Ślęzak et al.
2013). In that earlier framework, packrows were described by simple summaries accessible
independently from the underlying data. It combined the ideas taken from other database
technologies (Abadi et al. 2013) and the theory of rough sets (Pawlak and Skowron 2007),
by means of using summaries to classify data packs as relevant, irrelevant and partially rele-
vant for particular SELECT statements – by analogy to deriving rough set positive, negative
and boundary regions of the considered concepts, respectively. Such higher-level classifica-
tions were useful to limit the amounts of compressed data packs required to access to finish
calculations. Actually, one could think about it as production-ready example of a granular
data analytics mechanism switching efficiently between the detailed and summary-based
data representations – a mechanism envisioned in a number of studies on the principles of
granular computing (Yao 2016).

Our previous engine included rough query functionality developed for the purposes of
both external usage and internal query execution accelerations (Kowalski et al. 2013). The
idea was to quickly deliver some bounds for actual query results. However, it was hard to
configure other tools to work with such a new kind of output syntax. External tools would
expect the engine to use its rough query capabilities to generate approximate results in
standard format. Somewhat in parallel, we encouraged the academic community to design
summary-based machine learning and knowledge discovery methods (Ganter and Meschke
2011). However, once the original data access was disallowed, summaries stored within
our previous framework could not provide the new versions of machine learning algorithms
with sufficient information to make their results truly meaningful.

The above lessons – related to non-standard format of rough query results and limited
usefulness of the aforementioned engine’s summaries – had a significant impact on the
design presented in this paper. We decided to continue our works in this area because of the
rapidly growing challenges of standard database system users, not only with analyzing but
also simply managing their data. We followed the same strategy of grouping rows into pack-
rows as previously. However, to make it really efficient, we needed to solve two problems:
1) how to build compact summaries that contain enough knowledge about the original pack-
rows and 2) how to accurately perform operations on those summaries thereby removing
the need for access to the actual data.

2.2 Literature overview

Approximate query processing is already a popular trend in data analytics. Exact results of
database computations are not always a must, e.g., for the purposes of reporting, visualization,
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trend analysis, event detection, or decision making in general. By analogy to modern image
processing, approximate outcomes of data operations are acceptable, if they enable the users
to validly perceive and deploy data-derived knowledge. One may look at our algorithms
also from the perspective of information granulation and granular computing, wherein the
major rationales are that: 1) crisp, fine-grained information is often not available, 2) precise
information is costly, 3) fine-grained information is not necessary and 4) coarse-grained
information reduces cost (Zadeh 1997). Furthermore, approximate query processing corre-
sponds to the area of approximate computing, whereby the primary goal is to determine
what aspects and degrees of approximations are feasible so that the produced results are
acceptable (Agrawal et al. 2016). Actually, quite many components of the approach consid-
ered in this paper, such as reducing the length of heaviest algorithmic loops, quantizing input
information, as well as loosening the assumptions about completeness and consistency of
the analyzed data sources, could be compared to some of the most fundamental principles
of approximate computing.

There are several ways to develop approximate SQL solutions. In most approaches,
the results are estimated by executing queries on collections of intelligently derived data
samples (Mozafari and Niu 2015). One of advantages of such approaches is their abil-
ity to adapt statistical apparatus to deliver confidence intervals for approximate outcomes.
For that reason, we also considered introducing sampling into our earlier developments
(Kowalski et al. 2013). However, for truly big data sets, good-quality samples will need
to be quite large too. This surely limits query acceleration possibilities, not mentioning
about other sampling challenges related to multi-table joins, handling important outlying
values, etc.

The second category of approximate query approaches is based on summaries (his-
tograms, sketches, etc.) (Cormode et al. 2012). These two types of data synopses – samples
and summaries – are to some extent combinable (Ramnarayan et al. 2016). However, the
solutions developed so far build summaries for predefined query configurations or, e.g.,
OLAP-specific scenarios (Cuzzocrea and Saccȧ 2013). This limits their usefulness for
exploratory analytics, where – by default – it is hard to anticipate queries that will be exe-
cuted (Nguyen and Nguyen 2005). Because of this, it is important to emphasize that the way
we construct and utilize data summaries makes the engine introduced in this paper fully
applicable for ad-hoc analytical SQL statements.

Our summaries are expressed by means of histograms, whereby there is a long tradition
of their use within standard relational database optimizers (Jagadish et al. 1998). This is
a great source of inspiration when developing new engines such as ours. In the literature,
a lot of effort has been spent on addressing a need of updating histogram structures while
loading new data (Gibbons et al. 2002). However, this is one aspect where our approach is
different. This is because we build separate summaries for each subsequently ingested data
chunk. Hence, the newly buffered packrows do not interfere with the previously captured
knowledge structures.

There is also a significant amount of research related to multi-dimensional summaries,
although their derivation and utilization is far more complex than for single columns. Histo-
grams reflecting intensities of co-occurrences of values of different columns are a good starting
point in this field (Bruno et al. 2001). One can also refer to some examples of utilizing more
complex multi-dimensional summaries, e.g., tree-based structures that can be applied in a
progressive / iterative framework for approximate querying (Lazaridis and Mehrotra 2001).
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Compared to the aforementioned approaches, we operate with relatively simple multi-
column representations that are easy to embed into our knowledge transformation mecha-
nisms yet they contain sufficient information about co-occurrences of values in the original
data. Let us re-emphasize that our transformations work in a loop over the captured packrow
summaries. This gives us a truly valuable opportunity to model a potential drift of occur-
rence and co-occurrence characteristics with respect to time and origin of the continually
ingested data sources.

It is also important to realize that approximate and traditional styles of querying can
be used within the same application frameworks. Let us refer again to the tasks of data
exploration, where it is quite common to begin an analytical process with approximations
and finish with their thorough validation. With this respect, it is worth referring to methods
that support incremental and interactive computations. Herein, let us refer to paradigms
and tools related to evolution of complex SQL execution processes (Hu et al. 2007) and
interactive visualization / representation of analytical query results (Fisher et al. 2012).

In addition to savings in execution time and resource consumption, there are also other
motivations for approximate querying. Some of them are related to the fact that in dynamic
environments the data may evolve too fast to care about exact answers or – in other cases –
some data fragments may be temporarily unavailable (Narayanan et al. 2008). Yet another
challenge – analogous to the one encountered by search engines – is that available data
items and query conditions often do not perfectly match each other. In such situations, one
may wish to retrieve approximately fitting items (Naouali and Missaoui 2005). However,
such approaches usually require modifications of query syntax. This can be problematic in
practice, like in the case of changing standard format of query outcomes.

3 Knowledge capture settings

In this section, we describe the methods designed to fill the engine with meaningful knowl-
edge about the original chunks of data, i.e., packrows which are collections of rows acquired
from the original data tables.

3.1 Histograms, special values and domain representations

The knowledge capture layer needs to assess what aspects of the ingested data will be most
useful later for approximate query algorithms. This may turn out to be even more important
than the ability to store and process the original data, especially given the fact that perfect
data access is questionable in many environments (Narayanan et al. 2008). For the knowl-
edge representation purposes, we utilize enhanced histogram structures (Cormode et al.
2012). For each original data pack, its histogram contains information about dynamically
derived range-based bars and special values that differ from neighboring values of the given
column by means of their frequencies in the given packrow. We also store information about
significant gaps, i.e., the areas where there are no values occurring. This is further used
as a foundation for multi-column summaries capturing packrow-specific co-occurrences of
special values or values belonging to histogram ranges of different data columns. The devel-
oped methods decide what is worth storing based on a significance ranking of the detected
co-occurrences.
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Algorithm 1 outlines how we derive cut-points between consecutive histogram bars. This
is a simple combination of two standard domain quantization techniques. However, out of
all procedures that we have examined by now, it yields the highest accuracies of approx-
imate queries over data sets with complex column characteristics. First, the domain of a
data column within a given packrow is decomposed onto a fixed number of intervals of
(almost) equal length (lines 5-7). Then, the algorithm allocates (almost) equal amounts of
wanted histogram bars per interval and – for each interval separately – it produces the final
bars attempting to equalize frequencies of occurrence of rows with values dropping into
particular ranges (lines 16-18).

Figure 3 shows the representation of a data pack corresponding to “intersection” of a
packrow and a column. Once cut-points between histogram bars are decided, the knowledge
capture algorithms prepare heuristic rankings of candidates for special values and gaps.
Only a limited number of the highest-ranked values and gaps per data pack can be stored,
to address the need for a reasonable trade-off between summary footprint (translatable to
the expected query execution speed, by means of runtime of algorithmic hot loops that
transform data summaries) and completeness of gathered knowledge (translatable to the
expected accuracy of approximate query outputs).

Special values are chosen to minimize an average error related to estimating frequencies
of the original values. It resembles classical methods of histogram variance minimiza-
tion (Jagadish et al. 1998), although some modifications were required for columns with
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Fig. 3 A summary of a data pack corresponding to a single column, over a single packrow. Histogram bars
are composed of ranges and frequencies. Frequencies of special values are represented by additional bars
within histogram bars. Algorithms for deriving ranges and gaps are designed so as to assure that their borders
actually occurred in the data

irregular domains. Similar ranking is created for gaps. Any value occurring in a given
pack can be a potential special value. Any interval between consecutive (along an order-
ing defined for a given domain) values occurring in a data pack is a candidate for a gap.
However, only the most significant gaps and values can be explicitly represented. Further
discussion about heuristic ranking functions that are worth considering during the process
of creation of single-dimensional summaries can be found, e.g., in Chądzyńska-Krasowska
et al. (2017).

Gaps play an important role in estimating local value distributions within histogram
ranges. As it will be clearly visible in Section 4, such estimations are crucial for proper
behavior of data summary transformations and final query result generation. For instance,
referring to Fig. 3, we know that in a given packrow, over a given data column, there were
3580 rows with values dropping into the range between 0 and 100. Let us assume that the
greatest common divisor stored for the corresponding data pack (denoted as the field gcd in
Fig. 5 described in Section 3.3) equals to 2. Thus, if a given query execution requires the
estimation of the number of distinct values occurring in the considered range, then knowl-
edge about a gap between 40 and 60 may improve that estimation by avoiding counting 9
potential values that did not occur in the original data.1 Knowledge components related to
occurrence of distinct values will be further referred to as domain representation.

3.2 Co-occurrences of histogram bars and special values

The remaining task is to describe co-occurrences between (ranges of) values of different
columns. This is quite a significant differentiator in our approach when compared to other

1Gaps are interpreted as open intervals.
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methodologies of utilizing summaries in approximate query processing. The key objective
is to set up a multi-column representation that is simple enough to operate with at the levels
of both knowledge capture and query-specific knowledge transformations. This drove our
decision to restrict ourselves to modeling co-occurrences for only pairs of columns and
represent such pairwise relationships only in a partial way. Although one might say that
such a model cannot be sufficiently informative, remember that it is applied locally for
each of separate packrows. This allows our ranking algorithms to focus on different pairs of
columns and their corresponding values for different fragments of the ingested data, leading
towards ability to express far more complex trends and patterns than one might expect.

To keep a low footprint of summaries, we store co-occurrence-related information only
for a limited number of important pairs of bars and special values. For packrow t and
columns a and b, let us refer to a’s and b’s histogram bars using iterators i and j , respec-
tively. Let us denote by pt

(
ra
t [i]), pt

(
rb
t [j ]) and pt

(
ra
t [i], rb

t [j ]) data-derived probabilities
of occurrence of a’s values within its i-th bar, b’s values within its j -th bar and pairs of
a’s values within its i-th bar and b’s values within its j -th bar, respectively. We use the
following ranking function to express the importance of pairs of histogram bars:

barst
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Formula (1) evaluates how much accuracy could be lost by a query execution process based
on the product pt

(
ra
t [i]) pt

(
rb
t [j ]) instead of the actual quantity of pt

(
ra
t [i], rb

t [j ]). For a
given packrow t , we use function barst to jointly evaluate all pairs of bars for all pairs of
columns. This results in devoting relatively more footprint to pairs of columns, which are
more interdependent than others. After choosing a fixed amount of the most important pairs
of ranges, for given columns a and b, we store two types of information. For the chosen
pairs

(
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t [j ]), we store the following co-occurrence ratios:
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For not chosen pairs, we need an approximate average ratio for the purposes of, e.g., our
WHERE-related version of the belief propagation process (Neapolitan 2003) (see Section 4).
For the pairs of histogram bars, such default ratio (denoted by default_bar_bar_tau in
Fig. 5) can be defined as follows:

τt (a, b) =
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i,j :τt
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)
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where by writing ‘τt

(
ra
t [i], rb

t [j ]) ∈ t̃’ we mean that the ratio τt

(
ra
t [i], rb

t [j ]) is chosen to
be stored in the summarized representation of packrow t . Let us refer to Fig. 4, which shows
how the ratios are calculated (Fig. 4).

The ratio (3) minimizes a weighted error comprising quantities of the form |τt (a, b) −
pt

(
ra
t [i],rb

t [j ])
pt (ra

t [i])pt

(
rb
t [j ]) |, for pairs of ranges whose co-occurrence ratios are not stored. Formulation

of τt (a, b) enabled us to redesign and adapt some of classical probability estimation and
revision methods (which would have – in their original versions – quadratic complexity
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Fig. 4 Example of quantized probabilities in a packrow t embracing 65000 original rows, for columns a

and b, each described using three histogram bars. Under the assumption that the engine stores co-occurrence
information about only one pair of a’s and b’s ranges – τt

(
ra
t [1], rb

t [3]) = 4/3 – the default ratio for other
pairs equals to τt (a, b) = 17/19

with respect to the number of bars / values), so they work linearly for the knowledge trans-
formation purposes (see Section 4). In Chądzyńska-Krasowska et al. (2017), we reported
also some interesting mathematical properties of τt (a, b) with regards to machine learning
methods.

An analogous approach can be introduced for pairs of special values. Let us denote by
sa
t [k] and sb

t [l] the k-th and l-th special values for columns a and b within packrow t ,
respectively. Let us denote data-derived probabilities of their occurrence and co-occurrence
as pt

(
sa
t [k]), pt

(
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t [l]) and pt

(
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t [k], sb

t [l]). The ranking used in the knowledge capture
layer compares co-occurrence ratios of special values to the ratios for their “parents”,
i.e., histogram ranges that sa

t [k] and sb
t [l] drop into – denoted by sa

t [k]↑ and sb
t [l]↑ –

respectively:
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Default co-occurrence ratios analogous to formula (3) are stored for special values as well.2

They are utilized by the engine during the knowledge transformation processes whenever
there is a need to refer to pairs of special values that were not chosen to be stored. For
chosen pairs of special values, we store their corresponding ratios τt

(
sa
t [k], sb

t [l]) defined
similarly to (2).

2In Fig. 5, one can find two types of default ratios – default_special_special_tau and default_not_covered
_special_special_tau – corresponding to the cases of “parents” of special values whose ratios are stored and
are not stored, respectively.
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3.3 Analytical testing environment

Our engine stores data summaries in binary files accessible by approximate query execution
methods via internal interfaces. From a logical viewpoint, the contents of those files can
be represented as a collection of data summary tables displayed in Fig. 5. For diagnostic
purposes, we implemented a converter that transforms the contents of the binary files into
an explicit relational form. As a result, one can use standard PostgreSQL to access and
analyze the data summary tables that store information about histogram frequencies and
ranges, special values, gaps, as well as bar-to-bar and value-to-value co-occurrences, per
each database, table, column and packrow, independently from the implemented knowledge
transformation mechanisms.

Fig. 5 Data summary tables available for diagnostic and analytical purposes
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This kind of an alternative access to the outcomes of our knowledge capture layer proved
helpful when developing our quality testing environment. Moreover, the schema presented
in Fig. 5 is a great means for elucidation to our customers. With a use of simple SQL,
one can check which pairs of columns are most correlated by means of co-occurrences
of their histogram ranges and special values (by querying bar_bar and special_special,
respectively), what is the degree of repeatability of special values in different data packs
of the same data column (by querying special), whether values of particular data columns
evolve from packrow to packrow (by querying pack and gap), etc.

This kind of extra knowledge can be helpful for the users to better understand quality
and performance characteristics of our query execution processes. Moreover, they may wish
to explore data summary tables directly to do basic analytics, e.g., approximately visualize
demographics of particular columns. We also work with data summaries in their relational
form visible in Fig. 5 while prototyping new algorithms. For instance, in Chądzyńska-
Krasowska et al. (2017) we reported some examples of feature selection methods performed
entirely on our data summary tables. The obtained empirical results prove that our one-
dimensional and two-dimensional structures described in the previous subsections can
provide completely new means to scale machine learning algorithms (Peng et al. 2005).

4 Knowledge transformation operations

For each SELECT statement, the engine transforms available data summaries iteratively to
build a summary of the query result. Different transformation mechanisms are dedicated
to different operations such as filtering, joining, aggregating, etc. Each subsequent opera-
tion in a query execution chain takes as its input relevant summaries produced by previous
operations. Once the summaries corresponding to the final stage of query execution are
assembled, we use them to produce the outcome interpretable as a standard SQL result.
This idea becomes particularly interesting when compared to approximate query techniques
based on data sampling, where – after all – the whole computational process remains at the
original level of atomic data.

4.1 Filtering-related transformations

Let us consider the operation of filtering, i.e., taking into account SQL clauses such as
WHERE (in the case of summaries of the original tables or dynamically derived summaries
of the nested SELECT results) or HAVING (in the case of dynamically derived summaries of
earlier GROUP BY operations). For the engine introduced in this paper, this means revising
frequencies for histograms, special values and co-occurrence ratios for columns relevant for
further query execution stages, basing on filters specified over other columns.

The filtering process adapts the tree-based belief propagation (Neapolitan 2003), which
is a popular tool in decision making and modeling (Weiss and Pearl 2010). Over the years,
many improvements and extensions of the original belief propagation algorithms were
proposed, including their SQL-based implementations (Gatterbauer et al. 2015). Neverthe-
less, this paper presents the first production-ready attempt to embed this idea inside an
approximate query engine, where – in a loop over packrows – the most interesting co-
occurrences of bars and special values of different columns are used as partial knowledge
about data-derived conditional probability distributions. For more examples of probabilistic
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information flow models that operate with partial knowledge about value co-occurrences,
let us refer to Pawlak (2005).

Let us consider a simple query of the form SELECT SUM(a) from T WHERE b >
x, which involves columns a and b in data table T . From the perspective of our knowledge
transformation layer, the process of executing this query is split into two separate phases: 1)
the filtering transformation: calculating new counts and frequencies of a’s histogram bars
(and special values) subject to the condition b > x and 2) the result generation: assembling
SUM(a) based on the outcome of filtering, in combination with information about values
occurring inside particular ranges of a. Herein, we concentrate on the first of the above
phases. The second one will be discussed in Section 5.

Figure 6 illustrates how b > x influences b’s and a’s representation. For a simpler
query, i.e., SELECT COUNT(*) FROM T WHERE b > x, the whole procedure would
be finished by revising the heights of b’s bars – contribution of an exemplary packrow t

into estimation of the amount of the original rows satisfying b > x would be then roughly
43333. However, to estimate SUM(a), we need to propagate information about b > x
onto a. Namely, we need to replace probabilities pt

(
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t [1]), pt

(
ra
t [2]) and pt

(
ra
t [3]) that

reflect the input data with revised probabilities p′
t

(
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t [1]), p′

t

(
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t [2]) and p′

t

(
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t [3]) that

reflect the filtered data. Contribution of packrow t to overall calculation of SUM(a) can be
then derived using estimation of the number of its corresponding rows holding b > x and
the revised probabilities of a’s bars.

Equation p′
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Fig. 6 illustrates a general idea of belief propagation. The revised probability p′
t

(
ra
t [1])

is calculated using classical total probability that combines previously-revised marginal

Fig. 6 Revision of probabilities over columns a and b subject to b > x. For packrow displayed in Fig. 4,
it is estimated (basing on b’s domain representation) that b > x holds for 33% of the original rows with
b’s values dropping into the second range of b’s histogram. After recalculation of partial counts, the revised
probability p′

t

(
rb
t [3]) of b’s third range becomes higher than the original pt

(
rb
t [3]). As this range is known

to have positive co-occurrence with the first range on a, the revised p′
t

(
ra
t [1]) is higher than pt

(
ra
t [1])
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probabilities over b with fixed conditional probabilities of a subject to b. In our approach,
conditionals pt

(
ra
t [i]|rb

t [j ]) can be retrieved as τt

(
ra
t [i], rb

t [j ]) pt

(
ra
t [i]) or, for not stored

co-occurrences, approximated by τt (a, b) pt

(
ra
t [i]). This leads to the following:

p′
t

(
ra
t [i]) / pt

(
ra
t [i]) = ∑

j :τt

(
ra
t [i],rb

t [j ])∈t̃

[
p′

t

(
rb
t [j ]) τt

(
ra
t [i], rb

t [j ])]

+
[
1 − ∑

j :τt

(
ra
t [i],rb

t [j ])∈t̃ p′
t

(
rb
t [j ])

]
τt (a, b)

(5)

The above proportion is a foundation for the WHERE-related knowledge transformations
implemented in the engine. In further subsections, we show how to extend it towards multi-
column scenarios. As for now, let us just note that it can be easily generalized onto the
case of operating with both histogram bars and special values. Moreover, let us empha-
size that the mechanism of revising the whole vector of probabilities over a using (5) can
be implemented in such a way that its computational cost remains linear with respect to
the explicitly stored co-occurrences. As briefly outlined in Section 3.2, this is a great per-
formance advantage when compared to a non-optimized quadratic style of working with
conditional probability distributions.

4.2 Dynamic construction of propagation trees

Let us now explain how the idea of belief propagation can be adapted to serve for the
WHERE-related knowledge transformations. The most basic propagation algorithm operates
on a directed tree spanned over variables assigned with finite domains of values. A directed
edge in the tree expresses causal relation, whereby a parent makes its child independent
from its remaining non-descendants. Such relation is encoded in a form of conditional prob-
ability distribution of the child node subject to its parent. For each packrow t , our task is
to construct and use a tree spanned over columns involved in a given query, with probabili-
ties defined by means of available histograms and co-occurrence ratios. In the general case,
distributions are defined over special values and histogram ranges embracing the remain-
ing “non-special” values. For the sake of clarity, we limit ourselves to a simplified scenario
where one-dimensional column representations correspond only to histogram ranges.

Let us refer again to the example in Fig. 6. In that case, the corresponding tree can be
envisioned as a ←− b, that is a is the child of b. Single-variable probability distributions are
defined over ranges ra

t [1], ra
t [2] and ra

t [3], as well as rb
t [1], rb

t [2] and rb
t [3]. (Actually, one

can see that this is one of differences when compared to classical model of belief propaga-
tion, where the single-variable distribution is stored only for the root of a tree.) Furthermore,
conditional distribution pt

(
ra
t [i]|rb

t [j ]) can be retrieved as either τt

(
ra
t [i], rb

t [j ]) pt

(
ra
t [i])

in the case of τt

(
ra
t [i], rb

t [j ]) ∈ t̃ , or τt (a, b) pt

(
ra
t [i]) otherwise.

As another example, let us consider the statement SELECT b, SUM(a) FROM T
GROUP BY b WHERE b > x. In this case, the propagation tree a ←− b looks like
before. However, in addition to single-column distributions, we need to pass further also
revised knowledge about co-occurrences involving a’s and b’s histogram ranges. This is
because of the specifics of the GROUP BY operation, which – as briefly outlined at the
beginning of Section 7 – transforms summaries reflecting the filtered data into summaries
representing packrows of tuples indexed by the grouping values and their corresponding
aggregation coefficients. Thus, if appropriately recalculated ratios between a and b are not
provided, then the whole mechanism would produce incorrect final summaries. We go back
to this topic in Section 4.3, where it is discussed how to use propagation trees to revise
knowledge about co-occurrence ratios.
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As yet another example, let us consider the query in Fig. 7, where it is required to revise
data summaries with respect to conjunction of two conditions – b > x and c < y. In this
case, in order to follow the idea of tree-based belief propagation, we need first to construct a
tree over nodes a, b and c. Initially, we actually used to derive such trees during the phase of
knowledge capture. The tree structures could be quite different for different packrows but,
on the other hand, we used to assume that – for a given packrow t – it would be reasonable
to have a single fixed tree ready for usage in the case of arbitrary queries. That approach
turned out to be not flexible enough, as different queries – involving potentially different
subsets of columns – may require different trees somewhat optimized with regards to their
needs. To better address this issue, we developed a query-adaptive method of dynamic tree
derivation.
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Algorithm 2 addresses the task of tree construction in lines 2-3 and 6. The first stage is to
connect pairs of columns, for which there are corresponding co-occurrence ratios stored in
the summary of packrow t . This process is limited to the set of columns B∪C, where B gath-
ers columns that will be required at further query stages and C denotes columns with query
conditions specified. The idea of not connecting pairs of columns with no co-occurrence
representation is based on the assumption that such pairs are relatively weakly correlated
with each other. Indeed, according to function barst defined by (1), such complete lack of
two-dimensional information means that the given two columns – when treating them as
quantized random variables with data-derived probabilities pt – seem to be approximately
independent from each other.

Fig. 7 Construction and usage of a directed tree for the WHERE-related belief propagation corresponding to
the query SELECT a, b, c FROM T WHERE b > x AND c < y. For packrow t , it is assumed that
there are some cases of co-occurrence ratios stored for each of pairs of the considered columns a, b and c.
The approximated mutual information measure linking a and b is assumed to be weaker than in the cases of
a and c, as well as b and c
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If the undirected graph Gt constructed as a result of lines 2-3 has multiple connected
components – further denoted by GX

t for some column subsets X ⊆ B ∪C – then, as above,
we can assume that those subsets are approximate independent from each other. This means
that further calculations can be conducted for each of such components separately and then
merged together. Let us denote by pt (Q

↓X) the estimated ratio of rows in packrow t that
satisfy filters specified in query Q on columns in C ∩ X (line 16). Then, the estimated ratio
of rows in packrow t that satisfy all conditions of Q – denoted as pt (Q) – can be calculated
as the product of coefficients pt (Q

↓X) (line 17). Similarly, we can run belief-propagation-
based mechanisms aimed at revision of histograms and co-occurrence ratios over particular
components GX

t and then readjust them to obtain final summaries representing the filtered data.
In order to perform calculations with respect to a given X ⊆ B ∪C, we need to construct

a tree based on GX
t . This is initiated in line 6 of Algorithm 2. We employ the measure of

mutual information (Peng et al. 2005) computed for pairs of columns to span an undirected
tree SX

t over GX
t . Precisely, we use a summary-based approximation of that measure, as it

was investigated in Chądzyńska-Krasowska et al. (2017):

It (a, b) = ∑
i,j :τt

(
ra
t [i],rb

t [j ])∈t̃ pt (r
a
t [i])pt (r

b
t [j ])τt

(
ra
t [i], rb

t [j ]) log τt

(
ra
t [i], rb

t [j ])

+
[
1 − ∑

i,j :τt

(
ra
t [i],rb

t [j ])∈t̃ pt (r
a
t [i])pt (r

b
t [j ])τt

(
ra
t [i], rb

t [j ])
]

log τt (a, b)

(6)
The usage of mutual information is justified by relationships between the data-derived
information entropy of a graphical model and the accuracy of conditional independence
assumptions that it represents (Ślęzak 2009). The usage of spanning trees that maximize
mutual information is actually related to the foundations of second-order product approx-
imations of joint probability distributions, which were deeply investigated in the literature
(Meila 1999).

In Section 4.3, we describe how to calculate the revised probabilities and ratios within
each X ⊆ B ∪ C. To do this, we need to transform an undirected tree SX

t into its directed

version
−→
S X

t . Algorithm 2 addresses this task in lines 7-8. In order to minimize the amount of
further computations, we choose as the tree’s root a column that is on average closest to the
elements of C ∩X. Later, during the belief propagation process, it is also worth considering
line 18 that checks whether complete calculations are really necessary. Namely, if the first
phase of propagation provides us with pt (Q

↓X) = 0 over any of connected components of
Gt , then packrow t can be skipped as irrelevant.

Surely, we realize that the whole introduced approach raises a number of questions with
regards to the accuracy of estimations represented by transformed data summaries. First,
one needs to take into account quantization of original column domains as discussed in
Section 3.1. Second, as elaborated in Section 3.2, we can afford storing only a fraction
of co-occurrence ratios representing relationships between quantized / discretized domains
of different columns, which leads, e.g., to potentially inaccurate judgements with respect
to data-derived probabilistic independencies. Third, in order to adapt the tree-based belief
propagation mechanisms to model the process of filtering, we partially neglect some of two-
column relationships that are evaluated as weaker than the others. Still, despite all those
potential inaccuracy factors, the approximate results of analytical queries that we tested on
large real-world data sets are usually close enough to their exact counterparts. Thanks to
the diagnostic analysis performed on data summary tables described in Section 3.3, we can
conclude that this is because our histogram generation, as well as special value / domain gap
/ co-occurrence ratio ranking functions are indeed able to store the most meaningful aspects
of the original data.
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4.3 Adaptation of belief propagation algorithm

In this subsection, we focus on calculations over a single tree
−→
S X

t , for a column subset
X ⊆ B∪C corresponding to one of connected components of graph Gt . As before, we refer
to Algorithm 2. The discussed procedures are also visualized by Fig. 6 that actually concerns
the case of a connected graph, i.e., X = B ∪ C, where B = {a, b, c} and C = {b, c}.

The idea of adapting tree-based belief propagation is motivated by a need to develop
an efficient method to model conjunctions of conditions specified over multiple columns.
In this paper, we do not consider other logical operations (such as, e.g., disjunctions). We
do not consider conditions defined over derived columns either (such as, e.g., arithmetic or
CASE WHEN expressions – see Section 7 for further discussion). Such enhancements are
quite straightforward to develop in the near future. Moreover, the current engine already
contains some significant extensions when compared to the classical characteristics of
propagation mechanisms (Weiss and Pearl 2010). In particular, it enables us to work with
conjunctions of more complex single-column conditions than the “variable = value” filters
that would be supported by standard model (Neapolitan 2003).

Let us denote by cQ a two-valued variable characterizing whether a given original row
in packrow t could hold the condition specified by query Q over column c ∈ C ∩ X. Let us
represent the values of cQ as rc

Q[1] and rc
Q[2] corresponding to rows satisfying and not satis-

fying the considered condition, respectively. (Note that we do not index those values with t ,
as they have the same meaning for all packrows of a given table.) Using such new notation,
we can rewrite probabilities discussed in Section 4.2 as pt (Q

↓X) = pt (
∧

c∈C∩X rc
Q[1]) and

pt (Q) = pt (
∧

c∈C rc
Q[1]). Moreover, the main task of this subsection can be now formu-

lated as estimation of new frequencies and co-occurrence ratios for (pairs of) columns in B

as conditionals subject to
∧

c∈C rc
Q[1].

As shown in Fig. 7 (see also line 11 in Algorithm 2), we extend tree
−→
S X

t with nodes
corresponding to variables cQ and specify their parents as the corresponding columns
c ∈ C ∩ X. Such new causal relations are equipped with conditional probabilities of the
following form (line 12):

pt (r
c
Q[1]|rc

t [i]) = ‖rc
t [i] ∩ Q’s condition on c‖t‖rc

t [i]‖t

(7)

where the nominator estimates the number of rows in packrow t whose values on c drop
into its i-th range and in the same time satisfy the considered WHERE clause over c, while
the denominator simply denotes the height of the i-th bar for c. Let us refer to Fig. 6, where
– for bQ representing filter b > x – we obtain pt (r

b
Q[1]|rb

t [1]) = 0, pt (r
b
Q[1]|rb

t [2]) = 1/3

and pt (r
b
Q[1]|rb

t [3]) = 1. For this particular example, Algorithm 2 would proceed with

the tree a ←− b −→ bQ. Let us also note that computation of pt (r
b
Q[1]|rb

t [2]) would be
the only place referring to more detailed knowledge about the domain of b. Namely, the
analysis of gaps would influence estimation of the proportion of values observed in rb

t [2]
that are greater than x. At all the remaining stages, Algorithm 2 would operate entirely with
histograms and co-occurrence ratios.

After extensions described in lines 11-12, the given tree is ready to perform belief propa-
gation, where query conditions are modeled by setting appropriate coefficients at the leaves

corresponding to variables cQ, c ∈ C ∩X. For a ∈ X and tree
−→
S X

t , let us denote by Da
t and

Na
t the sets of all descendants and non-descendants of a (including a itself), respectively.

Let:
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– p
↓
t

(
ra
t [i]) be the probability that conjunction

∧
c∈C∩Da

t
rc
Q[1] holds in packrow t

subject to observing values within range ra
t [i] on column a,

– p
↑
t

(
ra
t [i]) be the probability that values within range ra

t [i] are observed on column a

subject to satisfaction of conjunction
∧

c∈C∩Na
t

rc
Q[1].

Given the independence of Na
t and Da

t subject to a in the considered tree-based probability
model, we shall assume the following proportion:3

p′
t

(
ra
t [i]) ∝ p

↓
t

(
ra
t [i]) p

↑
t

(
ra
t [i]) (8)

The left hand side of (8) represents the revised probability distribution on the quantized
domain of a, so it sums up to 1 for all considered indexes i. This means that it is sufficient to
find any value proportional to the above right hand side. The major advantage of tree-based
belief propagation is its ability to recursively determine parameters λt

(
ra
t [i]) ∝ p

↓
t

(
ra
t [i])

and πt

(
ra
t [i]) ∝ p

↑
t

(
ra
t [i]), so as to replace (8) with the following one:

p′
t

(
ra
t [i]) ∝ λt

(
ra
t [i]) πt

(
ra
t [i]) (9)

Let us denote by Cha
t ⊆ Da

t the set of all children of column a in
−→
S X

t . The standard way
of calculating parameters λt and πt is as follows:

– for each node cQ, we put λt

(
rc
Q[1]

)
= 1, λt

(
rc
Q[2]

)
= 0,

– for all other leaves in
−→
S X

t , we put λt ≡ 1,

– for each b ∈ X which is not a leaf in
−→
S X

t , we put:

λt

(
rb
t [j ]) = ∏

a∈Chb
t
λa

t

(
rb
t [j ]) (10)

where coefficients λa
t

(
rb
t [j ]) should be calculated as

∑
i pt

(
ra
t [i]|rb

t [j ]) λt

(
ra
t [i]). How-

ever, as the engine stores only partial knowledge about data-derived probabilities, the
classical computation of λa

t

(
rb
t [j ]) is replaced by:

λa
t

(
rb
t [j ]) = ∑

i:τt

(
ra
t [i],rb

t [j ])∈t̃ τt

(
ra
t [i], rb

t [j ]) pt

(
ra
t [i]) λt

(
ra
t [i])

+τt (a, b)
[
αa

t − ∑
i:τt

(
ra
t [i],rb

t [j ])∈t̃ pt

(
ra
t [i]) λt

(
ra
t [i])

] (11)

where αa
t = ∑

i pt

(
ra
t [i]) λt

(
ra
t [i]). (10–11) are the basis for the λ-downward phase of the

developed WHERE-related belief propagation. (12–13) considered below enable us to run
the π -upward phase. Let us note that – when compared to the general layout – we do not

need to initiate πt for nodes cQ, as those are leaves in the extended version of
−→
S X

t .

First, for the root of
−→
S X

t , we put πt

(
rroot
t [i]) = pt

(
rroot
t [i]). Then, for each

a ∈ X which is not the root, one would normally specify πt

(
ra
t [i]) as equal to

∑
j pt

(
ra
t [i]|râ

t [j ]
)

πa
t

(
râ
t [j ]

)
, where â denotes the parent of a and:

πa
t

(
râ
t [j ]

)
= πt

(
râ
t [j ]

) ∏
b∈Châ

t \{a} λb
t

(
râ
t [j ]

)
(12)

3Let us recall that we deal with a dynamically derived approximate probability model, with all its conse-
quences discussed at the end of Section 4.2. The investigation how accurately such models reflect the data is
one of our main analytical testing scopes.
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However, for the same reason as above, we change the classical way of deriving πt

(
ra
t [i])

based on coefficients πa
t

(
râ
t [j ]

)
to the following one:

πt

(
ra
t [i]) = pt

(
ra
t [i])

[
∑

j :τt

(
ra
t [i],râ

t [j ]
)
∈t̃

τt

(
ra
t [i], râ

t [j ]
)

πa
t

(
râ
t [j ]

)

+ τt

(
a, â

)
[
βa

t − ∑
j :τt

(
ra
t [i],râ

t [j ]
)
∈t̃

πa
t

(
râ
t [j ]

)]] (13)

where βa
t = ∑

j πa
t

(
râ
t [j ]

)
. Due to the specifics of our tree construction, there is a straight-

forward way to estimate the ratio of rows in packrow t that satisfy conditions of query Q

defined on columns belonging to C ∩ X:

pt (Q
↓X) = ∑

i pt

(
rroot
t [i]) λt

(
rroot
t [i]) (14)

We can retrieve pt (Q
↓X) right after the λ-downward phase of belief propagation and, in the

case of multiple connected components of graph Gt , derive the final pt (Q) according to line
16 in Algorithm 2. This leads towards already-discussed potential performance benefits.
Namely, if pt (Q) = 0, we can skip further calculations for packrow t and jump directly to
line 34.

Another aspect of performance acceleration relates to parameters λa
t

(
rb
t [j ]) and

πt

(
ra
t [i]). Let max_no_of _bars denote the maximum number of histogram bars, as in

Algorithm 1. In their original form, formulas λa
t

(
rb
t [j ]) = ∑

i pt

(
ra
t [i]|rb

t [j ]) λt

(
ra
t [i])

and πt

(
ra
t [i]) = ∑

j pt

(
ra
t [i]|râ

t [j ]
)

πa
t

(
râ
t [j ]

)
would lead toward the quadratic cost

O
(|X| · max_no_of _bars2

)
. On the contrary, (11) and (13) provide us with computa-

tional complexity at the level O
(
max

(|X| · max_no_of _bars, |t̃ |)), where |t̃ | denotes the
number of co-occurrence ratios stored by the considered engine for packrow t .

The last aspect of Algorithm 2 is to use λ/π -coefficients to deliver revised single-column
distributions and co-occurrence ratios (denoted in general as t̃ ′) as an input to subsequent
query execution steps or the final phase of query result generation (discussed in Section 5).
With regards to histograms, one can refer to proportion (9). As about co-occurrence ratios
involving connected columns, it is enough to note that – for a given a and its parent â –

the revised probability p′
t

(
ra
t [i]|râ

t [j ]
)

could be resolved by the belief propagation pro-

cess performed with Q’s conditions extended by λt (r
â
t [j ]) ← 1 (and 0 otherwise). Simple

recalculations lead then towards the following formula for the revised co-occurrence ratio

derived as p′
t

(
ra
t [i]|râ

t [j ]
)

divided by p′
t

(
ra
t [i]):

τ ′
t

(
ra
t [i], râ

t [j ]
)

= λt (ra
t [i])τt

(
ra
t [i],râ

t [j ]
)
pt (ra

t [i])
λa

t

(
râ
t [j ]

)
p′

t (r
a
t [i])

(15)

The above equation can be used to recalculate all co-occurrence ratios stored in t̃ . For pairs
of columns that are not connected, we can use the same formula for a slightly modified tree
as described in lines 23-29 of Algorithm 2. This part of the process is also highlighted as
the last step in Fig. 7. The idea is to temporarily replace one of the existing edges with the
edge directly connecting the considered columns. The whole operation is performed in such
a way that a loss of summary-based approximation of mutual information It – and therefore
also a loss of the tree entropy – is minimized. The revised default ratios τ ′

t (a, b) are then
obtained by using the formula analogous to (3).
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5 Generating final query results

Once the summary of a query output is calculated, the engine translates it into the standard
SQL result format. Prior to this stage, as visible in Fig. 8, knowledge being transformed
throughout subsequent query execution stages is highly condensed and therefore it requires
only a fraction of resources of a traditional database engine to produce the results. However,
at the end, we need to deliver a result in an externally interpretable format. (Unless this is
the case of a nested query, where the result of subquery can remain in a summarized form,
like we did with rough queries in Kowalski et al. 2013.) This phase could be referred to as
materialization, though it should not be confused with a standard meaning of materialization
in columnar databases (Abadi et al. 2013).

Alternatively, if the knowledge capture layer is regarded as responsible for aforemen-
tioned information granulation (Zadeh 1997), then translation of query result summaries
into final approximate results can be treated as information degranulation. This way, the
overall design of our engine fits the idea of calculations on information granules, with a
special emphasis on their transformation and reorganization. More inspirations – related in
particular to switching between granular and detailed data representations – can be found in
Liu et al. (2013).

Query result generation can also be understood as transition from a result summary to a
result comprising crisply-valued tuples. For simple queries, such as aggregations optionally
grouped with respect to low-cardinality data columns, this stage is quite straightforward.
As an example, let us go back to the SELECT statement considered in Section 4.1. Its
execution consists of transforming information about a subject to the clause b > x and
then producing the final outcome SUM(a). In this case, the result can be computed as a total
sum of outputs produced by each of packrows. For a given packrow, we take into account
the transformed frequencies of a’s special values and we add value · f requency scores to
the constructed sum. The remaining part is to calculate contributions of histogram bars after
subtracting frequencies of their special values. For this purpose, we construct an estimate
of an average “non-special” value within each bar. Such estimate can be obtained based on
domain representation discussed at the end of Section 3.1.

Fig. 8 Query execution process understood as a sequence of data summary transformations, with the query
result generation as its very last step
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The situation changes if high-cardinality columns are involved. Then, it is especially
beneficial to model all data operations at the level of summaries and switch to the detailed
values just prior to shipping the query result outside. Let us consider query SELECT a,
b, c FROM T WHERE b > x and c < y highlighted in Fig. 7. In this case, after
belief propagation, we need to generate collections of the resulting a-b-c tuples correspond-
ing to each of (non-zeroed) packrow summaries. First, we use those summaries (both single-
and multi-dimensional ones) to create collections of tuples labeled with codes of special
values and histogram ranges (symbolizing occurrences of “non-special” values). At the end,
we replace codes with final values generated using – again – domain information available
for the involved columns.

In conclusion, query result generation relies both on operations presented in previous
subsections and the domain representation used at the last stage. Let us recall that in addi-
tion to knowledge summarized in terms of (co-)occurrences of special values and histogram
bars, we store the most significant gaps and the greatest common divisors of values observed
in the original data packs. Referring to the theory of rough sets (Pawlak and Skowron
2007), we can say that special values whose frequencies were not pushed down to zero
during query execution constitute a kind of domain’s positive region, i.e., these are values
that should contribute to the query result. On the other hand, gaps, greatest common divi-
sors, dictionaries (if available) and zeroed frequencies can be used together to define the
domain’s negative region, i.e., values that should not contribute to the result. Utilization of
such regions during result generation is one of the areas of our ongoing improvement, as
it strongly relates to elimination of non-existing values in the approximate query outcomes
(Chądzyńska-Krasowska et al. 2017).

6 Empirical evaluation

Let us now discuss how we approach the topic of the engine evaluation. From the user
perspective, the most important aspect is to look at the speed versus accuracy of deriving
approximate results, in comparison to both exact and sample-based styles of calculations.
From an architectural roadmap standpoint, we should also consider abilities of our approach
to scale with respect to available computational resources and perform sufficiently well for
increasingly complex operations. This is in line with Fig. 9 that shows our ultimate goal to
combine summary-based computations with other paradigms.

Figure 10 illustrates a typical scenario of comparing our solution with the others. Surely,
one can expect an increase in performance at the cost of losing accuracy. The point is to
find out the right balance between these two aspects for particular case studies involving
expected queries, data characteristics and data owner requirements (Glick 2015). The initial
task is to assist the users in evaluating the accuracy. As mentioned in Section 2.2, several
approximate query engines enrich results with confidence intervals that reflect the output’s
credibility when comparing it to a hypothetical actual result (Mozafari and Niu 2015). How-
ever, first we need to establish the means for expressing similarities between approximate
and explicitly computed standard results, so as to confirm the user expectations with respect
to the speed-versus-accuracy trade-offs.

A reasonable measure of similarity between exact and approximate outcome of queries
should certainly satisfy some basic mathematical properties. Moreover, it should be coher-
ent with human perception of the meaning of both results in practice. In our framework, if
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Fig. 9 High-level roadmap for
combining summary-based
calculations with modern trends
related to functionality (see e.g.
Hinton 2007) and scalability (see
e.g. Zaharia et al. 2016) of data
analytics

an outcome of query Q is supposed to take a form of a single numeric value, then – denoting
by outQ / õutQ the exact / approximate results, respectively – we use the following:

similarity
(
outQ, õutQ

) = 1 − ∣∣outQ − õutQ
∣∣ /

(∣∣outQ
∣∣ + ∣∣õutQ

∣∣) (16)

Queries with GROUP BY deliver tuples labeled by grouping columns and aggregate scores.
The formula (16) is then averaged over all groups that occur in either exact or approximate
outcomes. In the case of query in Fig. 10, the groups are induced by column tm_day. For-
tunately, the same tm_day values occur for both exact and approximate results. Moreover,
for each tm_day, its corresponding exact and approximate aggregates are very close to each
other. This is why the overall similarity is close to the maximum. However, if an approxi-
mate result included a large amount of grouping values that should actually not occur at all,
then its overall similarity to the exact result would be significantly lower. This is one more
reason to pay special attention to the final query result generation, as it was discussed in
Section 5.

Referring to Fig. 10 again, one might claim that comparing ourselves to Hive / Spark
SQL is not fair because these are products with quite different aims. Indeed, such solutions
are expected to cooperate rather than compete with each other, at the level of both exter-
nal characteristics and the underlying computational paradigms. Actually, we have already
conducted experiments related to re-implementation of our knowledge transformation oper-
ations in native Spark environment (Zaharia et al. 2016). Preliminary results are highly
encouraging, as such implementation allows us to take advantage of query acceleration fac-
tors corresponding to both summary-based computations and resource-related scalability
used, e.g., by Spark SQL (Armbrust et al. 2015). On the other hand, it is certainly important
to empirically compare our approach with other approximate query processing solutions.
However, as mentioned in Section 2.2, this is a difficult challenge because those solutions
will still require far more development work to scale and provide sufficient accuracy for
complex queries.

The engine should be also evaluated from the viewpoint of complex analytical pipelines.
Figure 11 illustrates the idea of using query results within machine learning algorithms.
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Fig. 10 Our solution versus standard settings of Hive (Thusoo et al. 2009) and Spark SQL (Armbrust et al.
2015). Queries were executed over a data set provided by one of our customers. In the case of Hive and
Spark SQL, we used Hadoop / Parquet (https://parquet.apache.org/). For an exemplary query, the similarity
between its exact and approximate results is equal to 0.98

Indeed, there are a number of scalable implementations of decision tree induction (Nguyen
and Nguyen 2005) or data clustering (Ordonez and Cereghini 2000), that are based on
iterative execution of ad-hoc SQL statements. This gives us an opportunity to evaluate
approximate results not only by means of similarity measures but also by means of com-
paring the final outcomes of SQL-based machine learning algorithms while feeding them
with approximate versus exact calculations. This seems to refer to the aforementioned anal-
ogy between approximate querying and perceptual image processing methods, whereby the
main point is to focus on functionally important aspects of managed information.

As shown in Fig. 11, one can also run some machine learning methods directly against
data summaries, instead of using classical SQL-based interface. Any steps toward this direc-
tion would fit the harnessing knowledge dimension illustrated in Fig. 9. (We will discuss
it further in Section 7.) Moreover, from the perspective of evaluation of the engine compo-
nents, it would let us evaluate the knowledge capture layer decoupled from SQL-specific
knowledge transformation mechanisms. That was actually our motivation to develop the
already-mentioned summary-based feature selection approach reported in Chądzyńska-
Krasowska et al. (2017). Namely, we considered one of standard minimum redundancy
maximum relevance (mRMR) feature selection techniques (Peng et al. 2005) and executed
it for some real-world data sets using: 1) mutual information scores computed over the orig-
inal data, 2) mutual information scores computed over 15%-samples and 3) approximations
of mutual information scores derived directly from the stored data summaries. The outputs
– interpreted as rankings of columns produced by each of the three above runs of the mRMR
algorithm – turned out to be encouragingly similar to each other, while summary-based
approximate calculations were incomparably faster than for both other cases.

https://parquet.apache.org/
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Fig. 11 Different modes of comparative evaluation of accuracy of approximate queries. Solid lines represent
analytical processes based on SQL statements executed manually or automatically by, e.g., machine learning
(ML) algorithms (Nguyen and Nguyen 2005). Dashed line represents a more direct style of implementation
of ML methods over data summaries (Chądzyńska-Krasowska et al. 2017)

7 Further discussion and development directions

There are a number of important topics that were not addressed in this paper in a detailed
way. We summarize them briefly below.

Coverage of SQL operations Besides data filtering, the engine supports also other
operations, such as JOIN, GROUP BY, etc. While joining two tables, we need to create
summaries of collections of tuples that would belong to a standard output of JOIN opera-
tion. This is done by amalgamating the pairs of summarized packrows of input tables. Such
amalgamation is analogous to the filtering operations, though it can be preceded by a single-
table process of merging similar packrow summaries (the outcomes of Algorithm 2, if any
filters were applied prior to joining). As for GROUP BY, its standard output would consist
of vectors labeled by aggregate results and the corresponding values of columns used for
grouping. Herein, the goal is to produce summaries of such vectors without generating them
explicitly. More examples of our knowledge transformation operations will be described in
the near future.

Data types and derived columns In general, some components of above-mentioned
operations are agnostic, while the others depend on semantics of particular columns. For
example, in Algorithm 2, almost all calculations are conducted on probabilities of abstracted
partition blocks, except line 12. This is worth remembering while developing new knowl-
edge capture techniques. For instance, for some alphanumeric columns one could consider
histogram bars labeled by prefixes instead of ranges. For such new types of histograms,
some fundamental knowledge transformation functions – such as (7) – would require re-
implementation. There is also requirement for dynamic creation of both one-dimensional
and two-dimensional summaries reflecting new columns derived as complex expressions.
Certainly, computations at this level need to rely on the types of original columns as well.
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Disk and memory management Many database mechanisms can be adapted to work
with granulated summaries. Their contents can be clustered into even bigger chunks –
“mega-packs” – and labeled with higher-level descriptions. For the considered engine, it
would be a step toward the paradigms of multi-level granular data analytics (Yao 2016).
Yet another aspect refers to vertical data organization (Abadi et al. 2013), which – in our
case – means an independent access to collections of histograms, special values, gaps, co-
occurrence ratios, etc. This way, for every query, we can grasp these components of stored
data summaries that are required to execute particular operations. Such components can be
cached in memory for the purposes of future queries. Moreover, summaries representing
intermediate outputs of query execution stages can be managed in memory in a pipeline
style like in the case of standard database engines.

Knowledge capture improvements It is still possible to enhance our criteria for choos-
ing ranges, special values, etc. Improvements can be also achieved by putting more
intelligence into the process of assigning the original data rows to buffered packrows,
based on our earlier experiences (Ślęzak et al. 2013). Moreover, we have started inte-
grating our knowledge capture layer with some components of the Apache ecosystem
(https://kafka.apache.org/). We also work on the synchronization of distributed
knowledge capture processes with respect to maintenance of global structures, such as dic-
tionaries for low-cardinality columns (see table dict in Fig. 5). Our goal is to build a modular
architecture (see Fig. 12), where a layer of reconfigurable knowledge capture agents is the
means for connecting to different types of data locations and preparing summaries available
within different analytical platforms (Zaharia et al. 2016).

Accuracy trade-offs and hybrid scenarios In Section 3, we pointed out that our engine
should store only a limited fraction of knowledge, specified by means of maximum amounts

Fig. 12 Combining the components of our solution with other tools and systems
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of histogram bars, special values, gaps and co-occurrence ratios. Although all those amounts
are constrained by some defaults, it is possible to vary them with respect to particular
columns or the whole data tables. For instance, it may be desirable to optionally access some
of tables in a classical form and join them with summarized contents of other tables within
hybrid query execution schemes. Such flexibility fits real-world scenarios of incremental
data analytics (Fisher et al. 2012), but it requires careful maintenance of information that
allows the algorithms to extract the original data from remote sources. From the perspec-
tive of Fig. 12, this kind of information needs to be managed by knowledge capture agents.
Parameters enabling the engine to trace the original data should constitute a kind of analyt-
ical knowledge grid, by analogy to the concept of knowledge grid considered in semantic
web (Cannataro and Talia 2003).

Accuracy measures and confidence intervals In Section 6, we referred to the accu-
racy as a measure of similarity between exact and approximate query results, as well as
similarity between the outcomes of machine learning algorithms working with detailed and
summarized data sets. One can conduct a deeper discussion on a need of designing the
quality measures of data summaries and investigating relationships between the accuracies
of input summaries and the expected accuracies of query results. Finally, special atten-
tion should be devoted to development of confidence interval calculations, which would
assist the users in their everyday work, as is used with some sampling-based approximate
query engines. To accomplish this, our plans are twofold. First, we intend to enhance our
framework with a kind of query explain functionality enabling the users to trace potential
inaccuracies emerging at particular stages of query execution. Second, we intend to create
a tool, which maintains a sample of original packrows and uses it – in combination with the
core engine – to produce confidence intervals that characterize similarities between exact
and approximate outcomes of SQL statements.

Ability to expand beyond SQL Figure 12 illustrates our plans with respect to extend-
ing the engine with a library-style support for machine learning and knowledge discovery
(KDD) processes. As discussed in Section 6, it is indeed possible to use our data summaries
to conduct processes like mRMR feature selection (Peng et al. 2005). Some other feature
selection approaches seem to be easy to consider as well (Ślęzak 2009). The next steps can
include implementations of some elements of deep learning (Hinton 2007) and redesign of
some SQL-based decision tree induction algorithms (Nguyen and Nguyen 2005). Let us note
that most of such algorithms rely on iterative data and model transformations. This consti-
tutes a kind of conceptual equivalence between the work that we have already done within
our framework with respect to approximate SQL and the work that is still ahead in the field
of intelligent data processing. By analogy to Section 4, we need to develop efficient and
accurate methods of expressing atomic machine learning operations by means of transform-
ing summaries of their inputs into summaries of their outputs. Abstracting such operations
can lead towards a powerful environment for interactive analytics, wherein the users could
work with summaries of intermediate inputs / outputs via their favorite interfaces.

Integrating with other computational paradigms Figure 12 also summarizes oppor-
tunities related to putting our architectural strengths together with other trends in the areas
of scalable and distributed data processing. SQL Layer denotes the currently existing layer
of relational-query-focused transformations that – as outlined in Section 6 – can be suc-
cessfully embedded into Spark environment (Zaharia et al. 2016) (see also the harnessing
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resources dimension in Fig. 9). ML Layer represents methods discussed above (see also
Chądzyńska-Krasowska et al. 2017). Capture Agent refers to the distributed knowledge cap-
ture layer that can save constructed histograms, etc., in a format uniformly accessible by
SQL Layer, ML Layer and Spark’s generic tools enabling the users to work directly with
data summaries. This last aspect is especially interesting when combined with the previ-
ously mentioned idea of interactive analytics, which – in addition to intermediate inputs /
outputs of machine learning algorithms – can embrace an access to summaries of simply
filtered, joined and grouped data sets.

8 Conclusions

We presented a novel approximate query processing engine, which works by means of
SQL-related transformations of granulated data summaries. The engine does not assume an
access to the original data. Instead, it processes quantized histograms and a low percentage
of co-occurrence ratios reflecting multi-column interdependencies detected in the buffered
chunks of ingested data tables. Switching from the level of atomic data rows to low-footprint
descriptions of their bigger clusters enables us to significantly decrease the computational
cost of operations corresponding to filtering, joining, aggregating, etc. On the other hand, by
dealing with summaries at the level of data chunks – unlikely in the case of other database
solutions that do it for larger partition blocks or the whole tables – we are able to better
control their quality and address complex trends occurring in the original data.

The discussed engine is available in its first production version and it is heavily tested
by the first customers. The empirical observations confirm that it can be suitable for data
owners and data-based services providers who cannot currently cope with exploring per-
manently growing data, or who simply want to lower the cost of resources required for
data maintenance and analytics. Some of the already validated use cases include network
traffic analytics and intrusion detection, digital advertising, as well as monitoring of indus-
try processes. More generally, the users of similar engines can come from the fields of
online applications, internet of things, sensor-based risk management systems and other
tools related to machine-generated data.

We envision a number of interesting directions for further research and development.
First of all, we can see a huge opportunity in strengthening connections of our over-
all approach with the theories of rough sets and granular computing, e.g., with respect
to designing multi-level models of approximate summary-based computations. Moreover,
although the existing approximate querying approaches based on data sampling do not seem
to scale sufficiently in real-world scenarios, they provide the users with very helpful func-
tionalities such as confidence interval derivations. Thus, one of our goals is to introduce
such functionalities into our own framework, potentially by enriching our granulated data
summaries with small subsets of original rows. However – like in the case of any other extensions
– this will need to be done very carefully, so as to maintain the current performance characte-
ristics, especially from the viewpoint of working with distributed and remote data sets.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
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