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Abstract—We continue our research on utilizing histogram-
based data summaries in approximate derivation of mutual
information scores in large relational data sets. Our methodology
of creating, storing and using summaries has been designed
for the purpose of developing an approximate database engine
that is currently deployed commercially in the area of cyber-
security data analytics. However, a similar idea of approximate
data processing operations can be considered also in other fields,
including machine learning whereby heuristic calculations are
a component of many methods. In this paper, we focus on
investigation of one possible source of inaccuracy of our previ-
ously proposed approach to approximating mutual information
– that is, neglecting a kind of column domain drift during
distributed summary-based computations. We illustrate it using
an artificially created benchmark data set and we discuss how
to cope this particular challenge in the future.

Index Terms—Approximate Data Processing, Granulated Data
Summaries, Approximate Mutual Information

I. INTRODUCTION

A growing need for scalable solutions for machine learning

and business intelligence exists in the area of applications

involving large machine-/service-generated data sets. Most re-

search teams and companies address this challenge by scaling

out computational power even though this strategy is increas-

ingly inefficient. At the same time, people begin to realize that

some computational tasks could be performed in approximate

fashion, which leads toward opportunity of working with

tradeoffs between the speed, the resource consumption and

the accuracy of outcomes of data operations.
In [1], we presented a new approximate database engine

attempting to take advantage of such tradeoffs. Our engine

captures information upon data load, in form of one- and

two-dimensional summaries. It composes groups of data rows

(called packrows, containing 216 rows each by default) in-

coming into a given data table and summaries are built for

each group separately. The engine stores only such granulated
summaries without assuming any access to the original data.

SQL queries are executed directly on summaries, i.e., each data

operation (filtering, aggregating, etc.) transforms summaries of

its input directly into summaries of its output.

The considered engine is designed to perform on petabytes

of the summarized data. In [1], one can find empirical com-

parison of the speed of our style of approximate calculations

versus state-of-the-art methods of scaling by means of adding

computational resources. In [2], we reported the current major

commercial deployment of our engine in the field of online

cyber-security, whereby ad-hoc analytical queries need to

be executed against data sets containing detailed event logs

growing with intensity of over 300 billions of new rows per

month. In both works, we emphasized that our ultimate goal

is to integrate the proposed methodology with aforementioned

state-of-the-art solutions, so it is possible to work with gran-

ulated summaries representing pairwise disjoint pieces of the

data in a fully parallel/distributed environment.

In another thread of research, we have examined whether

our approach based on approximate summary transformations

could be applied in data mining. In [3], we investigated how

to utilize granulated data summaries to boost basic methods

of feature selection. We also worked on exposing summaries

in form of metadata tables that can be accessed using standard

SQL for the purposes of visual data analytics [4]. As the un-

derlying data operations performed during database querying

and data mining are quite analogous to each other, we expect

observing comparable speed-up and scalability capabilities. On

the other hand, there is still a lot to be done with regard to bet-

ter understanding and measuring (in)accuracy of approximate

results of data mining and data analytics processes.

In this article, we continue aforementioned research and

focus on a task of approximate derivation of entropy-based

mutual information scores for pairs of data columns. Herein,

there are two sources of inaccuracy. First, for each packrow – a

fragment of the original data set – we store only quantized and

partial characteristics of columns and their interdependencies.

Thus, any reference to pairwise probability distributions may

yield imperfect results. On the other hand, the good news is

that slight imperfections may not invalidate decision-making

processes based on approximate scores, with an expected

advantage of significant acceleration of calculations.
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The second source of inaccuracy refers to the fact that the

technique considered in [3] is fully distributed, whereby each

packrow (or rather its summary) quickly produces its own

set of scores and then, local scores are averaged for a given

pair of data columns over all packrows. Packrow-level com-

putations of mutual information are currently implemented in

our approximate database engine for the purpose of spanning

locally optimal belief propagation trees that serve as the basis

for SQL filtering [1]. For a given query, trees maximizing

overall mutual information (summed over their edges) can take

different forms for different packrows. This diversity provides

us with more accurate approximate query execution than it

would be a case for belief propagation trees optimized globally

for the whole data. However, if the task is to find pairs of

data columns that are interdependent globally, then such purely

local calculations may suffer from mistakes.

This study serves as a step toward understanding cases when

aforementioned mistakes are most visible. Our hypothesis is

that the latter above type of inaccuracy corresponds to a “do-

main drift”, which is evolution of single-column summarized

characteristics from packrow to packrow. According to the

presented experimental results, this is indeed valid observation

– for columns whose values are distributed across packrows in

a uniform way, their approximated mutual information scores

(linking them with other columns) are relatively more reliable

than for columns whose values are drifting along the data.

At this stage of our research, we do not present a complete

solution to this problem yet. However, we discuss whether it

is possible to achieve it by enriching our current model of

distributed approximation of mutual information by additional

calculations conducted over an aggregated table gathering

together simplified summaries of all packrows.

From a general perspective of parallel and distributed com-

puting, our current approach to approximating global (table-

level) mutual information is a typical example of decomposing

a given task onto pre-arranged data fragments and then,

aggregating local outcomes in quite a naïve way. On the other

hand, the discussion triggered by our experiments serves as a

guideline how to make that second phase of calculations more

sensitive with respect to the data. It is worth noting that further

development at this level would require us to pay attention also

to the first aforementioned source of inaccuracy – operating

with quantized column domains. Indeed, calculations on an

aggregated table representing all packrows would need to be

preceded by assembling global quantization of a domain of

each single column. This can be done by merging one-column

summaries available for particular packrows into global rep-

resentations – a mechanism that is already used inside our

approximate database engine for other purposes.

The paper is structured as follows. In Section II, we recall

our methodology of deriving meaningful summaries of the

original data. In Section III, we refer to our previous studies on

approximating mutual information. In Section IV, we present

new experiments on an artificially generated data set. In

Section V, we discuss how to make our current approach more

accurate. In Section VI, we conclude the paper.

Fig. 1. Summarized content of a single data pack corresponding to a single
numeric column, over a single packrow. Parts of quantized data pack’s domain
take form of complements (such as [200, 350] \ {300}) and special values
(such as 300) annotated with frequencies derived from the original data.

II. BACKGROUND ON GRANULATED DATA SUMMARIES

There are many methods to develop approximate databases.

Quite often, results are estimated by running queries on data

samples [5]. However, for big data sets, good-quality samples

need to be big as well, which limits query acceleration capabil-

ities. The second category of methods is based on summaries

(sketches, etc.) [6]. Our approach drops into this category, as it

forms summaries represented as extended histograms. There is

a long tradition of using histograms in the realm of database

engines, with a lot of effort devoted to updating histogram

structures while loading new data. In our approach, separate

summaries are built for subsequently loaded chunks of rows

– so-called packrows. Hence, newly loaded packrows do not

interfere with previously captured summaries.

Figure 1 shows how the domain of a given numeric column

(alphanumeric columns are still under investigation), within a

given packrow, can be quantized onto ranges and exceptions,

called special values. There is a lot of work behind designing

heuristics that choose ranges and special values for particular

data packs, i.e., collections of values of a single column

within a single packrow [1], [3]. Technically, we operate on

complements, i.e., ranges with special values excluded. As a

result, for each column within a packrow we obtain its local

domain partition, with its parts annotated with frequencies of

rows having the corresponding values. Besides special values

and complements there are also gaps, although they have no

influence on experiments conducted in this paper.

Figure 2 and Table I represent complete summary contents.

Besides single-pack parts and their frequencies, the key aspect

is to derive and store the most meaningful co-occurrences

(correlations, interdependencies) involving pairs of columns in

particular packrows. For packrow t and columns a and b, let us

refer to a’s and b’s parts (special values or complements) using

iterators i and j, respectively. Let Pt (part
a
t [i]), Pt

(
partbt [j]

)
and Pt

(
partat [i], part

b
t [j]

)
denote probabilities of occurrence

of a’s values within its i-th part, b’s values within its j-th part

and pairs of a’s and b’s values within their i-th and j-th parts,

respectively. We define co-occurrence ratios as:

τt
(
partat [i], part

b
t [j]

)
=

Pt(partat [i],part
b
t [j])

Pt(partat [i])Pt(partbt [j])
(1)
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Fig. 2. A revised (comparing to [1], [4]) metadata schema representing our
granulated summaries. For data sets stored in the engine, their corresponding
metadata can be accessed via PostgreSQL-like interface as virtual tables.

In [3], we investigated several methods of on-load evaluation,

which co-occurrences are most worth storing. In [2], we tested

how different “budgets” for the number of stored ratios (and

other parameters) can influence the speed and accuracy of

query execution. Generally, we assume that a complete map of

co-occurrences does not need to be maintained. Instead, pairs

that were not evaluated as meaningful during data load can be

estimated using default ratio τ̃t (a, b) =

=
1−∑

stored ratios Pt(part
a
t [i])Pt(partbt [j])τt(part

a
t [i],part

b
t [j])

1−∑

stored ratios Pt(partat [i])Pt(partbt [j])
(2)

where “
∑

stored ratios” means the sum over all combinations

of parts indexed by i and j such that τt
(
partat [i], part

b
t [j]

)
has been chosen to be stored by the engine.

In the next sections, we will show several examples how to

use above-outlined structures in approximate analytics (both

in our already-existing approximate database engine and in

new approaches to approximate data mining). However, let

us emphasize that our overall methodology makes practical

sense only if granulated summaries of the original data are

produced fast enough. From software architecture perspective,

our solution comprises two fully separate layers, responsible

for: 1) distributed and asynchronous acquisition of summaries

and 2) utilization of already-stored summaries to run approxi-

mate operations. The first layer is supposed to look efficiently

through potentially distributed and heterogeneous data sources,

leaving the actual data in-place. Given that summaries of

particular packrows can be computed independently from each

other, this phase can be highly optimized [7]. Still, even from

perspective of a single packrow, aforementioned quantization

and ranking-based calculations require significant effort and,

therefore, it will be always important to investigate new

computational techniques at this level [8].

TABLE I
HIGH-LEVEL DESCRIPTION OF METADATA TABLES AND THEIR COLUMNS

CURRENTLY SUPPORTED BY OUR APPROXIMATE DATABASE ENGINE.

Table / Column Description of Contents
column_header Basic information about columns
table_name Table name
column_name Column name
column_type Column type
is_null Can column have null values
is_dict Are column’s values replaced by dictionary codes

dictionary Information about dictionary codes
table_name Table name
column_name Column name
orig_value Original column’s value
code_value Its corresponding code used in data summaries

fragment_header Basic information about packrows
table_name Table name
fragment_id Packrow’s ordinal number in table
row_count Amount of original rows represented by packrow

column_fragment Basic information about data packs
table_name Table name
column_name Column name
fragment_id Packrow’s ordinal number in table
min_value Minimum value occurring in data pack
max_value Maximum value occurring in data pack
gcd Greatest common divisor for values in data pack

part_description Detailed information about data pack summaries
table_name Table name
column_name Column name
fragment_id Packrow’s ordinal number in table
part_id Part’s ordinal number (unique in data pack)
left_value Minimum value occurring in part
right_value Maximum value occurring in part
freq Amount of rows with values inside part’s domain
part_type Special value / complement / gap
part_parent For a value or gap, id of a range it belongs to

co_occurrence Information about co-occurrence ratios
table_name Table name
fragment_id Packrow’s ordinal number in table
column_1 First column in co-occurrence ratio
part_1 id of part corresponding to column_1
column_2 Second column in co-occurrence ratio
part_2 id of part corresponding to column_2
ratio_type Type of ratio (equations (1) or (2))
ratio Ratio for pair (part_1,part_2) in given packrow

Finally, let us emphasize that summaries described in this

section differ slightly from those introduced in [1]. In our

original approach, co-occurrence ratios were evaluated at two

different levels of hierarchy: pairs of special values and pairs

of ranges – but not “range minus special values” complements.

(When looking at Figure 1, it would mean counting rows with

values in [200, 350] instead of [200, 350] \ {300}.) Then, the

engine had to synchronize calculations at both levels of most

meaningful co-occurrences. On the other hand, representations

referred in Figure 2 and Table I are flattened, forming single-

layer partitions of local column domains. Such partitions are

much easier to handle, both during data load and any later

computations. As a side effect, the engine can now store (if it

decides to do so) a co-occurrence ratio linking a special value

with a complement defined over another column.
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III. APPROXIMATING MUTUAL INFORMATION

There are many aspects in which our approximate database

engine development corresponds to machine learning research.

For instance, our approach to deriving quantizations of local

data column domains within subsequent packrows could be

compared to start-of-the-art discretization methods [9]. We

will go back to this aspect later in this section.

As another example, the approximate query mechanism

introduced in [1] refers strongly to so-called probabilistic

graphical models [10]. Namely – as already mentioned in

Section I – for any SQL statement with WHERE conditions,

the engine constructs an internal tree-based scheme allowing

it to propagate influence of those conditions on one-column

representations of all data columns involved in the statement.

Such trees are spanned over nodes symbolizing columns and

they can be optimized for each packrow separately.

Now, in order to span a tree for packrow t, one can rely

on well-known idea of maximizing its joint mutual infor-

mation. If we had full access to packrow’s contents, then

such local mutual information for columns a and b would

take a form of It(a, b) =
∑

va,vb
Pt(va, vb) log

Pt(va,vb)
Pt(va)Pt(vb)

,

where va and vb denote original values of a and b, respec-

tively. In our quantized version, It(a, b) could be rewrit-

ten as
∑

i,j Pt

(
partat [i], part

b
t [j]

)
log τt

(
partat [i], part

b
t [j]

)
,

whereby Pt

(
partat [i], part

b
t [j]

)
could be further replaced

with Pt (part
a
t [i])Pt

(
partbt [j]

)
τt

(
partat [i], part

b
t [j]

)
. How-

ever, given limited information about pairwise probability dis-

tributions stored in our framework, we can only approximate

it using coefficients in equations (1) and (2):

Ĩt(a, b) =
∑

stored ratios Pt (part
a
t [i])Pt

(
partbt [j]

)
τt

(
partat [i], part

b
t [j]

)
log τt

(
partat [i], part

b
t [j]

)
+ log τ̃t (a, b)×

(
1−∑

stored ratios
Pt (part

a
t [i])Pt

(
partbt [j]

)
τt

(
partat [i], part

b
t [j]

))

Given the observed efficiency of the above approach in approx-

imate querying, we started to consider introducing the same

style of calculations in other areas. Inspired by an overview in

[11], we decided to develop summary-based techniques that

could be useful for basic data exploration and machine learn-

ing. The first step was to adapt the above way of approximating

mutual information for the purpose of accelerating classical

minimum redundancy maximum relevance (mRMR) feature

selection [12]. However, in this case we needed to operate

with global mutual information referring to the whole data

table – not its particular fragments represented by separate

packrows. In [3], we used the following naïve technique to

estimate global mutual information for columns a, b in table

T (where N denotes the amount of packrows in T ):

Ĩ(a, b) = 1
N

∑N
t=1 Ĩt(a, b) (3)

To assess reliability of formula (3), we conducted comparative

analysis of mRMR outcomes produced using approximate

and exact modes of calculating mutual information. We in-

vestigated a data set containing several millions of network

transmissions, obtained from a company developing tools for

early detection of viruses and worms. Our goal was to identify

features characterizing suspiciously large transfers.

In order to calculate exact variant of mutual information

measure I , we first discretized the data set using the same

procedure as the one applied in our approximate engine to

identify meaningful ranges and special values for particular

packrows. Thus, for each column, we quantized a single “big

data pack” representing the whole column’s content. Then, we

calculated I for each pair of discretized columns.

We analyzed orderings of additions of columns to fea-

ture sets constructed by mRMR algorithm. Although final

outcomes differed from each other, one could see that by

operating with approximate Ĩ instead of exact I , mRMR

could still produce useful feature sets. On the other hand, a

disadvantage of mRMR is that its outputs can be sensitive with

respect to heuristic choices of features at early stages of se-

lection process. Hence, in Section IV we conduct experiments

focusing simply on information scores, without applying them

as inputs to any more sophisticated algorithms.

It is also worth noting that we thoroughly examined our

quantization procedure from the perspective of its expressive

power, including its comparison with other data discretization

techniques [9]. In our approach, domain of a given column

(within a given packrow) is first split onto eight equal-length

intervals in order to assure that all its areas are described

in sufficiently detailed way. Then, each of such intervals is

partitioned onto eight smaller buckets supported by roughly

uniform (within the given interval) number of original rows. In

the meantime, a certain amount of special values is identified.

This way, we obtain one-column domain characteristics that

can be useful for our internal engine mechanisms and – on

top of that – for external data representation and visualization

purposes [4]. Therefore, aforementioned experiment based on

utilizing our quantization algorithm also at the level of full

data makes sense from practical perspective.

IV. EXPERIMENTS WITH “CAR_SALES” DATA SET

Experiments reported in [2] and [3] – referring to tuning

parameters of our data summaries from the perspectives of,

respectively, approximate query and feature selection accu-

racies – were conducted on proprietary real-world data sets.

Although such empirical studies let us validate and improve

our approach in various scenarios, it is not fully possible to

discuss freely their outcomes. Thus, in this paper, we refer to

our own artificially created data set called “car_sales”.

The “car_sales” data set was used for the first time while

testing our previous database engine, now known as Infobright
DB, which was based on utilizing (a different version of) gran-

ulated data summaries to accelerate classical data analytics

[13]. In particular, we used “car_sales” in [14] to investigate

influence of intelligent stream-based data reorganization pro-

cesses on the quality of the resulting data summaries.

Figure 3 displays the “car_sales” schema. In this paper,

we used a relatively small subset containing 100 × 216 rows

(therefore represented by 100 summarized packrows) obtained

by joining all tables into a fully denormalized form.
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Fig. 3. The “car_sales” database – an artificial data set (with 1,000,000,000
rows in the fact table) used in [14]. In this paper, we consider its denormalized
version and test the accuracy of approximate calculation of mutual information
measure against the subtable consisting of its first 100 × 216 rows.

Table II shows mutual information rankings obtained for

pairs of “car_sales” columns using exact and approximate

modes of calculations. In both cases, we display 50 most

strongly interdependent column pairs a-b, ordered descending

by I(a, b) and Ĩ(a, b), respectively. As in Section III, exact

computation of I was preceded by global discretization of the

original data set using the same method as the one applied

in our approximate database engine per-packrow, in order to

derive special values and range complements [1], [4].

We focus on rankings – not specific quantities – as this is

the key aspect of comparing different pairs of columns while,

e.g., conducting feature selection processes. When looking at

Table II, for the set of columns with identifiers and time-

specific attributes excluded, we can see that general tendencies

in score orderings obtained using both variants of calculations

are quite comparable to each other. In particular, top four

interdependencies in both scenarios are the same.

On the other hand, there are also significant differences.

One of them refers to columns whose value ranges vary most

often when looking at different packrows, i.e., so-called “time-

dependent” columns (where “time” is interpreted as natural

flow of rows as they are loaded into a database). We identified

such columns by measuring their exact mutual information I
with respect to an artificial column indicating ordinal numbers

of packrows that particular rows belong to (values from 1 to

100). Outcomes of such scoring are reported in Table III. We

denote the column with packrow indicators as pack.

One can see that – as we hypothesized in Section I with re-

gard to the second source of inaccuracy in our approach – mu-

tual information scores involving “time-dependent” columns

tend to be relatively weaker in approximate variant of compu-

tations than in its exact counterpart. For better visualization,

we bolded in both tables 10 columns most strongly correlated

with packrow ordinal numbers. Clearly, mutual information

scores for such columns are underestimated comparing to the

others during considered Ĩ-approximate calculations.

TABLE II
RANKINGS OF THE MOST STRONGLY INTERDEPENDENT COLUMN PAIRS

COMPUTED IN THE EXACT AND APPROXIMATE MODES FOR THE 100 ×
216-ROW DENORMALIZED SUBSET OF THE “CAR_SALES” DATABASE.
MOST “TIME-DEPENDENT” COLUMNS ARE BOLDED. TIME-SPECIFIC

COLUMNS AND IDENTIFIERS WERE EXCLUDED FROM THE STUDY.

rank based on exact I-scores rank based on approx. ˜I-scores
model_name-record_dt dealer_name-dealer_zip

make_name-record_dt make_name-model_name
make_name-model_name model_name-record_dt
dealer_name-dealer_zip make_name-record_dt

dealer_name-dealer_state dlr_trans_type-sales_commission
dealer_state-dealer_zip dlr_trans_type-sales_discount

sales_discount-sales_person dealer_state-dealer_zip
sales_discount-sales_commission dealer_name-dealer_state

sales_person-sales_commission sales_commission-sales_discount
sales_discount-dlr_trans_type sales_person-sales_commission

dlr_trans_type-sales_commission sales_person-sales_discount
dlr_trans_type-sales_person dlr_trans_type-sales_person

sales_city-sales_state sales_city-sales_state
sales_area_add-sales_city dealer_state-dealer_sale_ind

dealer_name-dealer_sale_ind dealer_zip-dealer_sale_ind
dealer_zip-dealer_sale_ind dealer_name-dealer_sale_ind
sales_area_add-sales_state dlr_trans_type-car_year

dealer_state-dealer_sale_ind dealer_sale_ind-car_year
record_dt-sales_area_add car_year-onstart_pkg

dealer_name-sales_city dlr_trans_type-car_colour
record_dt-dealer_name car_year-sunroof_pkg
sales_city-sales_person car_year-adv_audio_pkg

model_name-sales_area_add car_colour-onstart_pkg
dealer_zip-sales_city car_colour-sunroof_pkg

dealer_name-sales_person dealer_state-dlr_trans_type
record_dt-sales_city make_name-sunroof_pkg

model_name-dealer_name make_name-dlr_trans_type
record_dt-dealer_zip dealer_sale_ind-car_colour

sales_area_add-msa_name dealer_state-sunroof_pkg
sales_discount-record_dt sales_state-adv_audio_pkg
sales_discount-sales_city car_colour-adv_audio_pkg

record_dt-sales_person dealer_state-adv_audio_pkg
sales_discount-dealer_name make_name-dealer_sale_ind

dealer_zip-sales_person sales_commission-car_year
model_name-sales_city sales_person-car_year

sales_discount-sales_area_add sales_discount-car_year
dlr_trans_amt-record_dt sales_state-dlr_trans_type
model_name-dealer_zip sales_state-onstart_pkg

record_dt-msa_name make_name-onstart_pkg
model_name-sales_person sales_person-car_colour

sales_city-msa_name sales_commission-car_colour
sales_discount-model_name sales_discount-car_colour

sales_discount-dealer_zip dealer_state-onstart_pkg
dealer_name-msa_name make_name-adv_audio_pkg
msa_name-sales_person dealer_sale_ind-sales_state

dealer_name-sales_area_add sales_state-sunroof_pkg
dlr_trans_amt-model_name dealer_state-sales_discount

dealer_zip-msa_name dealer_state-sales_commission
dlr_trans_amt-msa_name dealer_state-sales_person
dealer_zip-sales_area_add make_name-sales_commission

V. DISCUSSION

Experimental results reported in Section IV are quite in-

tuitive as our approach to approximating mutual information

was originally designed for the purpose of local computations.

By averaging local approximations, one cannot fully express

dependencies between columns in the entire data. Still, it may

be relatively easy to introduce an additional coefficient reflect-

ing “inter-packrow” correlations that would be complementary

to “intra-packrow” level that is already in place.

856



TABLE III
RANKING OF MOST “TIME-DEPENDENT” COLUMNS IN THE “CAR_SALES”

DATA SET. I(∗, pack) DENOTES MUTUAL INFORMATION (COMPUTED ON

THE ORIGINAL DATA) MEASURED BETWEEN PARTICULAR COLUMNS AND

COLUMN pack LABELING ROWS WITH THEIR PACKROW NUMBERS.

column I(∗, pack) sales_commission 0.000295
sales_area_add 0.000576 sales_state 0.000192
dlr_trans_amt 0.000573 dealer_state 0.000172
dealer_name 0.000548 make_name 0.000142
record_dt 0.000548 car_colour 0.000096
sales_city 0.000532 car_year 0.000053
model_name 0.000530 adv_audio_pkg 0.000004
dealer_zip 0.000527 dlr_trans_type 0.000004
sales_person 0.000521 sunroof_pkg 0.000003
sales_discount 0.000515 onstart_pkg 0.000003
msa_name 0.000488 dealer_sale_ind 0.000002

One possible approach is to merge summaries of single

packrows into overall data representation and conduct extra

calculations at such unified level. Analogously to our studies

in [4], the first step may be to derive global quantization of

domains of particular columns based on characteristics of their

corresponding data packs. Then, by projecting approximations

of each of local (per-packrow) pairwise probability distribu-

tions onto a “grid” of globally quantized column domains,

we could estimate pairwise distributions corresponding to the

whole data table. Such estimation is likely to be less accurate

with respect to local relationships between columns within

particular data fragments. However, this is what we need –

scores calculated based on such high-level distributions can

be sufficient counterparts for scores Ĩt(a, b), t = 1, ..., N , that

are designed to reflect those local relationships.

Figure 4 illustrates how such global quantization can be

obtained in agglomerative way. At each step, we merge sum-

maries of two packrows, composing their unified compacted

representation that can serve as input for next steps. Merging

is performed by summing up (in a weighted way, if particu-

lar packrows consisted originally different amounts of rows)

two histograms (as well as special values, etc.) and running

quantization algorithm that is analogous to the one used during

data load [3]. As the sets of histogram ranges representing two

packrows can differ from each other, the algorithm is executed

on joint histogram with potentially higher resolution. Hence,

its main task is to choose range borders (and special values)

providing most reasonable merged representation using limited

footprint (that is more comparable to footprint of each of single

packrows rather than a sum of their footprints).

Analogous idea of merging packrow summaries was out-

lined in [1] in context of approximate execution of multi-table

queries. In our engine, we follow this kind of strategy to deal

with one-to-many join operations. Namely, whenever needed,

our algorithms produce a unified “big-packrow” summary of

a dimension table and then, in a loop, such summary is

amalgamated with particular fact table packrows (which lets

us compose extended denormalized representations of those

packrows). Thus, one can see that mechanism of assembling

global representations based on per-packrow summaries may

Fig. 4. Construction of global representation of column a based on (multi-
threaded) agglomerative merging of its local per-packrow summaries.

be helpful in many different scenarios. Moreover, our current

engine-specific multi-threaded implementation shows that such

merging operations can be highly optimized.

Let us denote by a∗ the obtained global quantization of

column a. One way of looking at a∗ is by means of CASE

WHEN expression that labels values of a with identifiers of

domain parts (special values or range complements) of a’s

global histogram representation that they drop into. Then, one

could approximate mutual information I(a, b) by runnning

SQL statement “SELECT a∗, b∗, count(*) FROM T GROUP

BY a∗, b∗;” and aggregating its outcome as I(a∗, b∗) (or rather

Ĩ(a∗, b∗) given the fact that query results produced by our

database engine are approximate). This kind of approach could

be regarded as an example of SQL-based data exploration

that gained significant interest in last decades [9]. Moreover,

from our perspective Ĩ(a∗, b∗) is a promising candidate to

serve as aforementioned coefficient reflecting “inter-packrow”

dependencies between columns a and b.
To summarize, we discussed how to improve approximation

of mutual information scores that are insufficiently modeled

by equation (3). One might claim that coefficient Ĩ(a∗, b∗)
derived above is a good approximation of I(a, b) by itself.

However, the key point is to learn how to combine it with

local scores Ĩt(a, b). This ultimate idea can be expressed by

the following equation, where ⊗ denotes combination operator

that we need to adjust in further research:

I(a, b) ≈ Ĩ1(a, b)⊗ ...⊗ ĨN (a, b)⊗ Ĩ (a∗, b∗) (4)

Surely, equation (4) represents just one of possible options. In

particular, although our engine runs fast on large data sets [2],

derivation of Ĩ (a∗, b∗) can be still a bottleneck comparing to

distributed computations of Ĩt(a, b), t = 1, ..., N . Thus, let us

extend this part with a few more observations.
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First, let us refer to a realm of granular computing [15],

where any calculations are supposed to run over so-called in-

formation granules gathering together various forms of entities

that are similar or adjacent to each other. If we interpret pack-

rows as groups of adjacent entities and treat their summaries as

information granules, then our overall approximate analytics

framework, as well as our previous developments in the area of

analytical databases [13], can be envisioned as industry-ready

deployment of granular computing paradigms.

Second, let us refer to somewhat relevant approach to data

clustering outlined in [16], where data rows are dynamically

grouped into micro-clusters (analogous to our packrows) and

then, the final clustering process is conducted on vectors of

their averaged summaries. Therein, the contents of particular

micro-clusters are assumed to be sufficiently homogeneous

to neglect operations at “intra-packrow” level. Actually, this

technique inspired our aforementioned research on stream-

based reorganization of packrow groupings [14].

In case of both [15] and [16], the fundamental idea is

to handle highly aggregated objects whose footprint is even

smaller than in case of our one- and two-column summaries.

Although such degree of aggregation would be too drastic

to assure good accuracy of data analytics in general, those

approaches may serve as a guideline to design faster (and still

meaningful enough as complementary computation) method

to obtain the last component in equation (4).

VI. CONCLUSIONS

We continued our investigation on utilization of granulated

data summary structures – whose ingestion from original

data sources was originally designed for the purpose of our

approximate database framework [1] – in some basic data

exploration operations. In particular, we extended our work

reported in [3] to better understand to what extent the proposed

approximate calculations of entropy-based mutual information

measure can reflect dependencies in large data.

Our research is motivated by a growth of interest in ap-

proximate computing in both, database and machine learning

communities. Although there is still a lot to be done to

set up proper expectations and fully integrate approximate

analytics engines with the mainstream of information tech-

nology applications [5], it is tempting to provide the users

with faster query answers even at the cost of loosening their

accuracy. It is particularly important in scenarios where the

speed of reaction really matters and where slight inexactness

of analytical results is not likely to damage the quality of

final decision-making. Analogous balance between the speed

and accuracy of computations should be introduced also in the

realm of machine learning solutions, especially if one wants

to make them working more interactively [11].

Certainly, there are still several aspects to be addressed.

In order to operate with aforementioned balance, one first

needs to understand how to express accuracy of approximate

calculations. In the field of databases, we can think about

it by means of measuring appropriately specified similarities

between exact and approximate query outcomes [17]. Anal-

ogously, in the area of data mining, one could adapt for

this purpose some already-existing approaches to structural

comparisons of models learnt from the data [10].

From the perspective of results reported in this paper, we

will continue our research on more accurate approximations of

mutual information taking into account both, local and global

relationships in the summarized data. At global level, we need

to better reflect “domain drift” or, in other words, “inter-

packrow” correlations that can affect particular columns in

various ways. Although we attempted to address this issue in

Section V, focusing particularly on deriving additional global

coefficients that could work well together with our previously-

designed “intra-packrow” calculations, there are still methods

of operating with compacted data representations (by means

of, e.g., granulation [16] or sampling [18]) that we should

investigate and potentially adapt for our purposes.

The idea of mixing together local and global approximations

requires further study also from computational perspective.

First, our methodology of running data operations on pack-

row summaries is perfectly combinable with modern parallel

processing principles [19]. The only difference is that now

calculations take place at different level of granularity, i.e.,

summaries of larger data collections rather than single data

rows. One of our future directions with this respect is to re-

factor current approximate processes – reflecting both database

and data mining operations – to let them perform smoothly

within Spark environment [20]. However, some tasks – such

as merging packrow summaries (as illustrated by Figure 4) or

calculating coefficients Ĩ (a∗, b∗) (using, e.g., our approximate

engine) – can be hard to fully parallelize. Thus, there is a need

to design them elegantly for truly big data sets.
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